Skip to main content
Log in

Investigation of the ceramifying process of modified silicone–silicate compositions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass frits were added into silicone-based composites with the aim to improve low temperature ceramification at elevated temperatures. The effect of glass frits on the properties of ceramic residue is investigated. Field emission scanning electron microscopy (FESEM), electron probe microchemical analysis (EPMA) and X-ray diffraction analysis (XRD) showed that glass frits reacted via a eutectic reaction with mica and silica. Electrical conductivity measurements at elevated temperatures showed a decline in volume resistivity with glass frit addition. It was concluded that increased conductivity is a result of ionic conduction of the glass phase produced by eutectic reactions between frits, silica and mica at high temperatures. Thermal mechanical analysis (TMA) was used to explore the dimensional changes of these composites during programmed heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lipowitz J (1982) J Fire Flammability 15:39

    Google Scholar 

  2. Hshieh FY (1998) Fire Mater 22:69

    Article  CAS  Google Scholar 

  3. Buch RR (1991) Fire Saf J 17:1

    Article  CAS  Google Scholar 

  4. Lipowitz J (1976) Fire Flammability 7:482

    CAS  Google Scholar 

  5. Kashiwagi T, Clearly G, Davis GC, Lupinski JH (1993) A non-halogenated, flame retarded polycarbonate. In: Proceedings of the international conference for the promotion of advanced fire resistant aircraft interior materials. Federal Aviation Administration Technical Center, Atlantic City, New Jersey, p 157

  6. Baldus HP, Wagner O, Jamsen M (1992) Mater Res Soc Symp Proc 271:821

    Article  CAS  Google Scholar 

  7. Riedel R, Passing G, Schonfelder H, Brook RJ (1992) Nature 355:714

    Article  CAS  Google Scholar 

  8. Dvornic PR, Lenz RW (1990) High temperature siloxane elastomers. Huethig & Wepf Verlag, New York

    Google Scholar 

  9. Dennis H, Zhu HD, Kantor SW, Macknight WJ (1998) In: Lyon RE (ed) Fire resistant materials: progress report, Final Report DOT/FAA/AR-97/100. U.S. Department of Transportation, Washington, DC, November 1998, p 59

  10. Lauter U, Kantor SW, Schmidt-Rohr K, Macknight WJ (1999) Macromolecules 32:3426

    Article  CAS  Google Scholar 

  11. Zhu HD, Kantor SW Macknight WJ (1998) Macromolecules 31:850

    Article  CAS  Google Scholar 

  12. Weil ED (1987) Plastics compounding (January–February) 31:40

  13. Marosi G, Marton A, Anna P, Bertalan G (2002) Polym Degrad Stab 77:259

    Article  CAS  Google Scholar 

  14. Marosi G, Csontos I, Ravadits I, Anna P, Bertalanand G, Toth A (1999) Recent Adv Flame Retard Polym Mater 10:88

    CAS  Google Scholar 

  15. Marosi G, Ravadits I, Bertalan G, Anna P, Maatoug MA (1998) In: Fire retardancy of polymers: the use of intumescence. The Royal Chemical Society, Cambridge, p 325

    Chapter  Google Scholar 

  16. Hepburn DM, Kemp IJ, Shields AJ (2000) IEEE Elect Insul Mag 16(5):18

    Article  Google Scholar 

  17. Mansouri J, Burford RP, Cheng YB, Hanu L (2005) J Mater Sci 40:5741

    Article  CAS  Google Scholar 

  18. Mansouri J, Burford RP, Cheng Y-B (2006) Mater Sci Eng A 425:7

    Article  Google Scholar 

  19. Norrish K, Hutton JT (1969) Geochim Cosmochim 33:431

    Article  CAS  Google Scholar 

  20. Barlow G, Manning DA (1998) Br Ceram Soc Trans 97:122

    Google Scholar 

  21. Fujino S, Ijiri H, Shimizu F, Morinaga K (1998) J Jpn Inst Metals 62(1):106

    Article  CAS  Google Scholar 

  22. Meunier M, Currie JF, Wertheimer MR, Yelon A (1983) J Appl Phys 54(2):898

    Article  CAS  Google Scholar 

  23. Ngai KL (1996) J Non-Cryst Solids 203(1):232

    Article  CAS  Google Scholar 

  24. Ungureanu MC, Levy M, Souquet JL (2000) Ceramics—Silikaty 44(3):81

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr E. Slansky for his help with the XRD analysis, Ms Irene Wainwright for her help with the XRF analysis and Mr B. Searle for his help with the EPMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaleh Mansouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansouri, J., Wood, C.A., Roberts, K. et al. Investigation of the ceramifying process of modified silicone–silicate compositions. J Mater Sci 42, 6046–6055 (2007). https://doi.org/10.1007/s10853-006-1163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1163-8

Keywords

Navigation