Skip to main content
Log in

Relationship between the Cu content and thermal properties of Al–Cu alloys for latent heat energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Current Al alloys still have shortcomings in their volumetric latent heat (LHV), compatibility and high-temperature inoxidizability, which limit their applications in the field of latent heat energy storage (LHES). The performance of aluminum alloys can be improved by the addition of Cu. The effects of the Cu content on the phase change temperature, mass latent heat (LHM), LHV, supercooling degree and microstructure of Al–Cu alloys were first studied by means of power-compensated differential scanning calorimetry, density, composition analysis and metallographic analysis. The measured values of the latent heat of Al–Cu alloys have been compared with the theoretically predicted values. The results show that for Al–Cu alloys with 7.3–52.8% Cu, the melting/freezing temperature is 540–655 °C/510–637 °C; the LHM and the LHV are 290–340 J g−1 and 877–1224 J cm−3, respectively; and the degree of supercooling is within 10 °C. The LHM and LHV of Al–Cu alloys decrease with the increase in the Cu content; when the content of Cu is over 16.6%, the difference between the theoretical value of the LHM and the measured average of the Al–Cu alloys is within 5%. The LHES phases in Al–Cu alloys are the α-Al and theta phases. Quantitative relationships of the Cu content and metallurgical microstructure with the LHM and LHV of Al–Cu alloys are established, and both theoretical and empirical equations are obtained for the estimation of the latent heat for Al–Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yuan YP, Zhang N, Tao WQ, Cao XL, He YL. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29(7):482–98.

    Article  CAS  Google Scholar 

  2. Jeon J, Lee JH, Seo J, Jeong SG, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88.

    Article  CAS  Google Scholar 

  3. Dan NN, Haghighat F. Thermal energy storage with phase change material—a state-of-the art review. Sustain Cities Soc. 2014;10:87–100.

    Article  Google Scholar 

  4. Yuan Y, Gao X, Wu H, Zhang Z, Cao X, Sun L, et al. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: method and model development. Energy. 2016;. doi:10.1016/j.energy.2016.11.058.

    Google Scholar 

  5. Kenisarin M. High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev. 2010;14(3):955–70.

    Article  CAS  Google Scholar 

  6. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65(10):67–123.

    Article  CAS  Google Scholar 

  7. Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11(9):1913–65.

    Article  CAS  Google Scholar 

  8. Wei G, Xing L, Du XZ, Yang Y. Research status and selection of phase change thermal energy storage materials for CSP systems. Proc CSEE. 2014;34(3):325–35.

    Google Scholar 

  9. Yuan Y, Li T, Zhang N, Cao X, Yang X. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124:881–8.

    Article  CAS  Google Scholar 

  10. Ge H, Li H, Mei S, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energ Rev. 2013;21(5):331–46.

    Article  CAS  Google Scholar 

  11. Kotzé JP, Von Backström TW, Erens PJ. High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids. J Sol Energy Eng. 2013;135(3):38–42.

    Article  Google Scholar 

  12. Gokon N, Nakamura S, Yamaguchi T, Kodama T. Cyclic properties of thermal storage/discharge for Al-Si Alloy in vacuum for solar thermochemical fuel production. Energy Procedia. 2015;69:1759–69.

    Article  CAS  Google Scholar 

  13. Sun JQ, Zhang RY, Liu ZP, Lu GH. Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Conv. 2007;48:619–24.

    Article  CAS  Google Scholar 

  14. Wang Z, Wang H, Li X, Wang D, Zhang Q, Chen G. Aluminum and silicon based phase change materials for high capacity thermal energy storage. Appl Therm Eng. 2015;89:204–8.

    Article  CAS  Google Scholar 

  15. Farkas D, Birchenall CE. New eutectic alloys and their heats of transformation. Metall Trans A. 1985;16(3):323–8.

    Article  Google Scholar 

  16. He F, Chao S, He X, Li M. Inorganic microencapsulated core/shell structure of Al–Si alloy micro-particles with silane coupling agent. Ceram Int. 2014;40(5):6865–74.

    Article  CAS  Google Scholar 

  17. Yousaf M, Iqbal J. Characterization of steel 1035 hot-dip-aluminized in pure Al and Al–Cu alloys. Mehran Univ Res J Eng Technol. 2010;29(2):327–36.

    Google Scholar 

  18. Liu H, Bouchard M. Evaluation of interaction coefficient in Al–Cu–H alloy. Metall Mater Trans B. 1997;28(4):625–32.

    Article  Google Scholar 

  19. Birchenall CE, Riechman AF. Heat storage in eutectic alloys. Metall Trans A. 1980;11(8):1415–20.

    Article  Google Scholar 

  20. Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy. 2013;39(4):285–319.

    Article  Google Scholar 

  21. Gasanaliev AM, Gamataeva BY. Heat-accumulating properties of melts. Russ Chem Rev. 2007;69(2):179–86.

    Article  Google Scholar 

  22. Mills KC. The heat capacity of Cu+Al alloys. J Chem Thermodyn. 1977;9(1):43–53.

    Article  CAS  Google Scholar 

  23. Quaresma JM, Santos CA, Garcia A. Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys. Metall Mater Trans A. 2000;31(12):3167–78.

    Article  Google Scholar 

  24. Murray JL. The aluminium–copper system. Int Metals Rev. 1985;30(1):211–34.

    CAS  Google Scholar 

  25. Okamoto H. Desk handbook phase diagrams for binary alloys. Materials Park: ASM International; 2000.

    Google Scholar 

  26. Zhang Y, Su Y, Ge XJ. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM. China Univ Sci Technol. 1995;25(4):474–8.

    CAS  Google Scholar 

  27. Wang X, Liu J, Zhang Y, Jiang DY. Experimental research on a kind of novel high temperature phase change storage heater. Energy Conv. 2006;47(15–16):2211–22.

    Article  Google Scholar 

  28. Maruoka N, Akiyama T, Sato K, Yagi J. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 2002;42(2):215–9.

    Article  CAS  Google Scholar 

  29. Callister WD, Callister WD. Fundamentals of materials science and engineering. Hoboken: Wiley; 2008. p. 824.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Natural Science Foundation of China (51378426), the Sichuan Province Youth Science and Technology Innovation Team of Building Environment and Energy Efficiency (2015TD0015), and the Fundamental Research Funds for the Central Universities (2682015CX038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yuan, Y. & Cui, F. Relationship between the Cu content and thermal properties of Al–Cu alloys for latent heat energy storage. J Therm Anal Calorim 129, 109–115 (2017). https://doi.org/10.1007/s10973-017-6153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6153-3

Keywords

Navigation