Skip to main content
Log in

Isothermal kinetics approach to investigating the oxidation process of red phosphorus in air

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The isothermal oxidation process of red phosphorus (RP) was investigated by thermogravimetric analysis in the temperature range of 320–480 °C. The model-free, model-fitting and reduced-time plot methods were used to research the oxidation kinetics of RP. According to the dα/dt − α and model-free curves in different temperatures, the oxidation temperatures are divided into two ranges: lower temperatures (320–380 °C) and higher temperatures (390–410 °C). The apparent activation energy and oxidation controlling mechanisms in different temperature ranges are obtained. Besides, the trend of the oxidation rate with mass loss or temperature ranges is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toxicity of military smokes and obscurants; National Research Council; chapter no. 4, vol. 1. National Academy Press: Washington D.C. 1997. pp. 98–126.

  2. Horold S. Improvements in stability of red phosphorus. Presented at the 27th international pyrotechnics seminar—special session on red phosphorus, Grand Junction, CO, 2000.

  3. Kelly R. Subject: Solicitation letter to the USMC for the RP project trans atlantic consultancy LLC, 27 2 2006.

  4. Edward NP. Flame-retardant thermoplastics. I. Polyethylene–red phosphorus. J Appl Polym Sci. 1979;24:1457–64.

    Article  Google Scholar 

  5. Yeh JT, Hsieh SH, Cheng YC, Yang JM, Chen NK. Combustion and smoke emission properties of poly (ethylene terephthalate) filled with phosphorous and metallic oxides. Polym Degr Stab. 1998;61:399–407.

    Article  CAS  Google Scholar 

  6. Levchik GF, Vorobyova SA, Gorbarenko VV, Levchik SV, Weil ED. Some mechanistic aspects of the fire retardant action of red phosphorus in aliphatic nylons. J Fire Sci. 2000;18:172–82.

    Article  CAS  Google Scholar 

  7. Levchik SV, Weil ED. Combustion and fire retardancy of aliphatic nylons. Polym Int. 2000;49:1033–73.

    Article  CAS  Google Scholar 

  8. Przybylski K, Brylewski T, Durda E, Gawel A, Kruk A. Oxidation properties of the Crofer 22APU steel coated with La0.6–Sr0.4Co0.2Fe0.8O3 for IT—SOFC interconnect applications. J Therm Anal Calorim. 2014;116(2):825–34.

    Article  CAS  Google Scholar 

  9. Gyurov S, Rabadjieva D, Kovatcheka D, Kostova Y. Kinetics of copper slag oxidation under non isothermal conditions. J Therm Anal Calorim. 2014;116(2):945–53.

    Article  CAS  Google Scholar 

  10. Guo W, Xiao H, Yasuda E, Cheng Y. Oxidation kinetics and mechanisms of a 2D-C/C composite. Carbon. 2006;44:3269–76.

    Article  CAS  Google Scholar 

  11. Guo W, Xiao H. Mechanisms and modeling of oxidation of carbon felt/carbon composites. Carbon. 2007;45:1058–65.

    Article  CAS  Google Scholar 

  12. Mohamed MA, Attia AK. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 24 May 2016.

  13. Ratusz K, Popis E, Ciemniewska-Zytkiewicz H, Wroniak M. Oxidative stability of camelina (Cameline sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. J Therm Anal Calorim. 2016;126:343–51.

    Article  CAS  Google Scholar 

  14. Jianshu Z, Xinmei H, Xiangbin W, Ye M, Xin Z, Lei Z. Isothermal oxidation mechanism of Nb-Ti-V-Al-Zr alloy at 700–1200 °C: diffusion and interface reaction. Corros Sci. 2015;96:186–95.

    Article  Google Scholar 

  15. Gao PZ, Wang HJ, Jin ZH. Study of oxidation properties and decomposition kinetics of three-dimensional (3-D) braided carbon fiber. Thermochim Acta. 2004;414(1):59–63.

    Article  CAS  Google Scholar 

  16. Tanaka H. Thermal analysis and kinetics of solid-state reactions. Thermochim Acta. 1995;267:29–44.

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  18. Brown M, Dollimore D, Galway A. Comprehensive chemical kinetics. Amsterdam: Elsevier; 1980.

    Google Scholar 

  19. Sharp JH, Brindley GW, Achar BNN. Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc. 1966;49(7):379–82.

    Article  CAS  Google Scholar 

  20. Halikia I, Neou-Syngouna P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320:75–88.

    Article  CAS  Google Scholar 

  21. Luo RY, Cheng JW, Wang TM. Oxidation behavior and protection of carbon/carbon composites prepared using rapid directional diffused CVI techniques. Carbon. 2002;40(11):1965–72.

    Article  CAS  Google Scholar 

  22. Vyazovkin S. Reply to ‘‘What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?’’. Thermochim Acta. 2003;397:269–71.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Sbirrazzuoli N. Estimating the activating energy for non-isothermal crystallization of polymer melts. J Therm Anal. 2003;72(2):681–6.

    Article  CAS  Google Scholar 

  24. Vyazovkin S. Two types of uncertainty in the values of activation energy. J Therm Anal. 2001;64(2):829–35.

    Article  CAS  Google Scholar 

  25. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics I. Isothermal kinetic studies. Thermochim Acta. 2005;429(1):93–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the innovation fund of Nanjing University of Science and Technology (Grant No. AE03001).

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Song, D. & Guan, H. Isothermal kinetics approach to investigating the oxidation process of red phosphorus in air. J Therm Anal Calorim 128, 1801–1810 (2017). https://doi.org/10.1007/s10973-016-6073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6073-7

Keywords

Navigation