Skip to main content
Log in

Experimental research on multistep decomposition kinetics of ammonium perchlorate in the space-confined environment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The decomposition kinetic analysis of ammonium perchlorate (AP) has long been the research focus for involving various physicochemical phenomena. In this article, differential scanning calorimetry (DSC) measurements with specially made glass crucible were carried out to study the decomposition process of AP in the space-confined environment for the first time. It discovers that the peak temperature (Tp2) of high-temperature decomposition (HTD) and the final reaction temperature (Tend,D) shift to a lower temperature as the sample mass increased. It also indicates that such decomposition process can be deconvoluted into three reaction steps: endothermic, low-temperature decomposition, and HTD. Moreover, kinetic parameters of the reaction process were calculated via isoconversional and model fitting methods. The correctness of the fitted kinetic parameters was verified by the reconstruction of the primitive experimental curves. The obtained reaction model contributes to an improved understanding of AP’s thermal decomposition in the space-confined environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A(α):

Pre-exponential factor, s1

A 1 :

Pre-exponential factor of endothermic reaction stage, s1

A 2 :

Pre-exponential factor of LTD reaction stage, s−1

A 3 :

Pre-exponential factor of the HTD, s1

E α :

Apparent activation energy, kJ mol1

E 1 :

Apparent activation energy of endothermic reaction stage, kJ mol1

E 2 :

Apparent activation energy of LTD reaction stage, kJ mol1

E 3 :

Apparent activation energy of HTD reaction stage, kJ mol−1

F i(t):

The mathematical peak function

N :

The total number of peaks

Q :

Specific decomposition heat, J g1

R :

Universal gas constant, 8.314 J mol1 K1

T :

Temperature, K

T 0 :

The temperature at which the DSC curve begins to deviate from the baseline, °C

T p1 :

The LTD exothermic peak temperature, °C

T p2 :

The HTD exothermic peak temperature, °C

T end, D :

The end reaction temperature of decomposition, °C

T onset :

Onset temperature of phase transition, °C

T end :

The end reaction temperature of phase transition, °C

T p :

Peak temperature of phase transition, °C

Δ H :

The average heat production, J g1

a 0 :

The amplitude, mW

a 1 :

The position, °C

a 2 :

The half width, °C

a 3 :

The asymmetry

f(α) :

Reaction model

n 1 :

Reaction order of endothermic reaction stage

n 21 , n 22 :

Reaction order of LTD reaction stage

n 3 :

Reaction order of HTD reaction stage

r i :

Reaction rate of the stage i, stage

t :

Time, s

x :

Arbitrary independent variable

α :

Reaction progress, the extent of conversion

β :

Heating rate, K s1

i :

Reaction number

References

  1. Badgujar DM, Talawar MB, Asthana SN. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305. https://doi.org/10.1016/j.jhazmat.2007.10.039.

    Article  CAS  PubMed  Google Scholar 

  2. Singh G, Kapoor IPS, Dubey S. Bimetallic nanoalloys: preparation, characterization and their catalytic activity. J Alloy Compd. 2009;480:270–4. https://doi.org/10.1016/j.jallcom.2009.02.024.

    Article  CAS  Google Scholar 

  3. Tang G, Tian S-Q, Zhou Z-X. ZnO micro/nanocrystals with tunable exposed (0001) facets for enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. J Phys Chem C. 2014;118:11833–41. https://doi.org/10.1021/jp503510x.

    Article  CAS  Google Scholar 

  4. Maycock N, Verneker VRP, Rouch L. Influence of growth parameters on the reactivity of ammonium perchlorate. Inorg Nucl Chem Lett. 1968;4:119–23. https://doi.org/10.1016/0020-1650(68)80150-3.

    Article  CAS  Google Scholar 

  5. Lang AJ, Vyazovkin S. Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust Flame. 2006;145:779–90. https://doi.org/10.1016/j.combustflame.2006.02.002.

    Article  CAS  Google Scholar 

  6. Zhu Y-L, Huang H, Ren H. Kinetics of thermal decomposition of ammonium perchlorate by TG/DSC-MS-FTIR. J Energ Mater. 2014;32:16–26. https://doi.org/10.1080/07370652.2012.725453.

    Article  CAS  Google Scholar 

  7. Rajić M, Sućeska M. Study of thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG. J Therm Anal Calorim. 2001;63:375–86. https://doi.org/10.1023/a:1010136308310.

    Article  Google Scholar 

  8. Vyazovkin S, Wight CA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater. 1999;11:3386–93. https://doi.org/10.1021/cm9904382.

    Article  CAS  Google Scholar 

  9. Liu L-L, Li F-S, Tan L-H. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2004;29:34–8. https://doi.org/10.1002/prep.200400026.

    Article  CAS  Google Scholar 

  10. Chen J, He S-M, Huang B. Highly space-confined ammonium perchlorate in three-dimensional hierarchically ordered porous carbon with improved thermal decomposition properties. Appl Surf Sci. 2018;457:508–15. https://doi.org/10.1016/j.apsusc.2018.06.301.

    Article  CAS  Google Scholar 

  11. Deng P, Wang H-X, Yang X-B. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite. J Alloy Compd. 2020;827: 154257. https://doi.org/10.1016/j.jallcom.2020.154257.

    Article  CAS  Google Scholar 

  12. Zhou L-Y, Cao H-B, Zhang L-L. Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate. J Hazard Mater. 2020;392: 122358. https://doi.org/10.1016/j.jhazmat.2020.122358.

    Article  CAS  PubMed  Google Scholar 

  13. Zou M, Jiang Xi-H, Lu L-D. Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. J Hazard Mater. 2012; 226: 124–30. https://doi.org/10.1016/j.jhazmat.2012.05.010

  14. Khairetdinov EF, Boldyrev VV. The mechanism of the low-temperature decomposition of NH4ClO4. Thermochim Acta. 1980;41:63–86. https://doi.org/10.1016/0040-6031(80)80096-7.

    Article  CAS  Google Scholar 

  15. Kiselev AN, Plyusnin VN, Boldyreva AV. Effect of preliminary treatment of ammonium perchlorate by a shock wave on its rate of thermal decomposition and burning of mixtures on its base. Combust Explo Shock. 1972;8:489–91. https://doi.org/10.1007/BF00741211.

    Article  Google Scholar 

  16. Sheng M, Valco D, Tucker C. Practical use of differential scanning calorimetry for thermal stability hazard evaluation. Org Process Res Dev. 2019;23:2200–9. https://doi.org/10.1021/acs.oprd.9b00266.

    Article  CAS  Google Scholar 

  17. Koga N, Goshi Y, Yamada S. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111:1463–74. https://doi.org/10.1007/s10973-012-2500-6.

    Article  CAS  Google Scholar 

  18. Dolgoborodov AY, Streletskii AN, Shevchenko AA. Thermal decomposition of mechanoactivated ammonium perchlorate. Thermochim Acta. 2018;669:60–5. https://doi.org/10.1016/j.tca.2018.09.007.

    Article  CAS  Google Scholar 

  19. Hu Y-H, Yang S-M, Tao B-W. Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum. 2019;159:105–11.

    Article  CAS  Google Scholar 

  20. Singh G, Kapoor IPS, Mannan SM. Studies on energetic compounds Part 8: Thermolysis of Salts of HNO3 and HClO4. J Hazard Mater. 2000;79:1–18. https://doi.org/10.1016/S0304-3894(00)00159-X.

    Article  CAS  PubMed  Google Scholar 

  21. Mallick L, Kumar S, Chowdhury A. Thermal decomposition of ammonium perchlorate-A TGA-FTIR-MS study: Part I. Thermochim Acta. 2015;610:57–68. https://doi.org/10.1016/j.tca.2015.04.025.

    Article  CAS  Google Scholar 

  22. Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17:135–49. https://doi.org/10.1016/j.jscs.2011.05.009.

    Article  CAS  Google Scholar 

  23. Kishore K, Verneker VRP, Mohan VK. Differential scanning calorimetric studies on ammonium perchlorate. Thermochim Acta. 1975;13:277–92. https://doi.org/10.1016/0040-6031(75)85048-9.

    Article  CAS  Google Scholar 

  24. Stoessel F. Thermal safety of chemical processes: risk assessment and process design. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2008.

    Book  Google Scholar 

  25. Jacobs PWM, Whitehead HM. Decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;69:551–90. https://doi.org/10.1021/cr60260a005.

    Article  CAS  Google Scholar 

  26. Manelis GB, Proshchin AV, Rubtsov YI. Thermal decomposition kinetics of ammonium perchlorate at high temperatures. Combust Explo Shock. 1968;4:169–75. https://doi.org/10.1007/BF00750855.

    Article  Google Scholar 

  27. Maycock JN, Verneker VRP. Role of point defects in the thermal decomposition of ammonium perchlorate. P Roy Soc A. 1968;307:303–15. https://doi.org/10.1098/rspa.1968.0191.

    Article  CAS  Google Scholar 

  28. Vyazovkin S, Burnham AK, Criado JM. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  29. Robert AGK, Siegmund F. Thermal decomposition of ammonium perchlorate. Quarterly Rev Chem Soc. 1968;23:430–59. https://doi.org/10.1039/QR9692300430.

    Article  Google Scholar 

  30. Mallick L, Kumar S, Chowdhury A. Thermal decomposition of ammonium perchlorate-A TGA-FTIR-MS study: Part II. Thermochim Acta. 2017;653:83–96. https://doi.org/10.1016/j.tca.2017.04.004.

    Article  CAS  Google Scholar 

  31. Evans MW, Beyer RB, McCulley L. Initiation of deflagration waves at surfaces of ammonium perchlorate-copper chromite-carbon pellets. J Chem Phys. 1964;40:2431–8. https://doi.org/10.1063/1.1725544.

    Article  CAS  Google Scholar 

  32. Zhu R-S, Lin M-C. Mechanism and kinetics for ammonium perchlorate sublimation: a first-principles study. J Phys Chem C. 2008;112:14481–5. https://doi.org/10.1021/jp803224x.

    Article  CAS  Google Scholar 

  33. Bircumshaw LL, Newman BH. The thermal decomposition of ammonium perchlorate-I. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments. P Roy Soc A. 1954; 227:115–132. https://doi.org/10.1098/rspa.1954.0284

  34. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36. https://doi.org/10.1016/j.tca.2005.11.038.

    Article  CAS  Google Scholar 

  35. Bircumshaw LL, Newman BH. Thermal decomposition of ammonium perchlorate II. The kinetics of the decomposition, the effect of particle size, and discussion of results. P Roy Soc A. 1955; 227:228–241. https://doi.org/10.1098/rspa.1955.0006

  36. Wang H-Y, Jacob RJ, Jeffery B. Assembly and encapsulation of aluminum NP’s within AP/NC matrix and their reactive properties. Combust Flame. 2017;180:175–83. https://doi.org/10.1016/j.combustflame.2017.02.036.

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Burnham AK, Favergeon L. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689: 178597. https://doi.org/10.1016/j.tca.2020.178597.

    Article  CAS  Google Scholar 

  38. Perejón A, Pedro ES-J, José MC. Kinetic Analysis of Complex Solid-State Reactions. A New Deconvolution Procedure. J Phys Chem B. 2011; 115: 1780–91.https://doi.org/10.1021/jp110895z.

  39. Muravyev NV, Koga N, Meerov DB. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide. Phys Chem Chem Phys. 2017;19:3254–64. https://doi.org/10.1039/c6cp08218a.

    Article  CAS  PubMed  Google Scholar 

  40. Yu Q, Liu Y, Sui H, Sun J. Kinetic Analysis of Overlapping Multistep Thermal Decomposition of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide (LLM-105). J Phys Chem C. 2018;122:25999–6006. https://doi.org/10.1021/acs.jpcc.8b07817.

    Article  CAS  Google Scholar 

  41. Koga N, Goshi Y, Yamada S. kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2012;111:1463–74. https://doi.org/10.1007/s10973-012-2500-6.

    Article  CAS  Google Scholar 

  42. Pedro E. S-, Perejón A, Criado J M. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010; 51:3998–4007. https://doi.org/10.1016/j.polymer.2010.06.020.

  43. Kitabayashi S, Koga N. Thermal decomposition of Tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J Phys Chem C. 2015;119:16188–99. https://doi.org/10.1021/acs.jpcc.5b04975.

    Article  CAS  Google Scholar 

  44. Eslami A, Hasani N. Thermoanalytical study of linkage isomerism in coordination compounds Part II: Solid state stepwise thermal interconversion of dinitro and dinitrito linkage isomers of trans-bis(ethylenediamine)cobalt(III) hexafluorophosphate. J Therm Anal Calorim. 2013;111:193–201. https://doi.org/10.1007/s10973-012-2470-8.

    Article  CAS  Google Scholar 

  45. Politzer P, Lane P. Energetics of ammonium perchlorate decomposition steps. J Mol Struct(Theochem). 1998; 454:229–35. https://doi.org/10.1016/S0166-1280(98)00293-0

  46. Góbi S, Zhao L, Xu B. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate. Chem Phys Lett. 2018;691:250–7. https://doi.org/10.1016/j.cplett.2017.11.026.

    Article  CAS  Google Scholar 

  47. Verneker VRP, McCarty M, Maycock JN. Sublimation of ammonium perchlorate. Thermochim Acta. 1971;3:37–48. https://doi.org/10.1016/0040-6031(71)85055-4.

    Article  CAS  Google Scholar 

  48. Jacobs PWM, Russell-Jones A. Sublimation of ammonium perchlorate. J Phys Chem. 1968;72:202–7. https://doi.org/10.1021/j100847a038.

    Article  CAS  Google Scholar 

  49. Gilbert R, Jacobs PWM. Thermal decomposition of perchloric acid. Combust Flame. 1971;17:343–53. https://doi.org/10.1016/S0010-2180(71)80056-1.

    Article  CAS  Google Scholar 

  50. Jacobs PWM, Russell-Jonesthe A. Thermal decomposition and ignition of mixtures of ammonium perchlorate+copper chromite. Symposium (International) on Combustion. 1967;11:457–62. https://doi.org/10.1016/S0082-0784(67)80170-X

Download references

Acknowledgements

The authors gratefully acknowledge the National key R&D Program of China (2017YFC0804701-4) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0660) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Chen.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HB., Zhao, XQ., Wu, WQ. et al. Experimental research on multistep decomposition kinetics of ammonium perchlorate in the space-confined environment. J Therm Anal Calorim 147, 11535–11547 (2022). https://doi.org/10.1007/s10973-022-11310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11310-x

Keywords

Navigation