Skip to main content
Log in

Oxidation kinetics of ilmenite concentrate by non-isothermal thermogravimetric analysis

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry. The oxidation kinetic model function and kinetic parameters of apparent activation energy (Ea) were evaluated by Málek and Starink methods. The results show that under air atmosphere, the oxidation process of ilmenite concentrate is composed of three stages, and the chemical reaction (G(α) = 1−(1−α)2, where a is the conversion degree) plays an important role in the whole oxidation process. At the first stage (α = 0.05−0.30), the oxidation process is controlled gradually by secondary chemical reaction with increasing conversion degree. At the second stage (α = 0.30−0.50), the oxidation process is completely controlled by the secondary chemical reaction (G(α) = 1−(1−α)2). At the third stage (α = 0.50−0.95), the secondary chemical reaction weakens gradually with increasing conversion degree, and the oxidation process is controlled gradually by a variety of functions; the kinetic equations are G(α)= (1−α)−1 (β=10 K · min−1, where β is heating rate), G(α) = (1−α)−1/2 (β=15−20 K · min−1), and G(α) = (1−α)−2(β=25 K · min−1), respectively. For the whole oxidation process, the activation energies follow a parabolic law with increasing conversion degree, and the average activation energy is 160.56 kJ · mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Chen, B. Song, L. N. Wang, T. Qi, Y. Wang, W. J. Wang, Miner. Eng. 24 (2011) 864–869.

    Article  Google Scholar 

  2. F. X. Wu, X. H. Li, Z. X. Wang, L. Wu, H. J. Guo, X. H. Xiong, X. P. Zhang, X. J. Wang, Int. J. Miner. Process. 98 (2011) 106–112.

    Article  Google Scholar 

  3. C. Li, B. Liang, S. P. Chen, Hydrometallurgy. 82 (2006) 93–99.

    Article  Google Scholar 

  4. S. H. Guo, W. Li, J. H. Peng, H. Niu, M. J. Huang, L. B. Zhang, S. M. Zhang, M. Huang, Int. J. Miner. Process. 93 (2009) 289–293.

    Article  Google Scholar 

  5. S. Samanta, S. Mukherjee, R. Dey, Trans. Nonferrous Met. Soc. China 24 (2009) 2976–2985.

    Article  Google Scholar 

  6. W. G. Fu, Y. C. Wen, H. E. Xie, J. Iron Steel Res. Int. 18 (2011) No. 4, 7–18.

    Article  Google Scholar 

  7. D. B. Rao, M. Rigaud, Oxid. Met. 19 (1975) 99–116.

    Google Scholar 

  8. S. K. Gupta, V. Rajakumar, P. Grieveson, Metall. Mater. Trans. B 22 (1991) 711–716.

    Article  Google Scholar 

  9. M. Iwasaki, H. Takizawa, K. Uheda, T. Endo, ISIJ Int. 47 (2007) 1416–1421.

    Article  Google Scholar 

  10. S. Itoh, S. Sato, J. Ono, H. Okada, T. Nagasaka, Metall. Mater. Trans. B 37 (2006) 979–985.

    Article  Google Scholar 

  11. M. Jabłonski, A. Przepiera, J. Therm. Anal. Calorim. 65 (2001) 617–622.

    Article  Google Scholar 

  12. G. Zhang, O. Ostrovski, Metall. Mater. Trans. B 44 (2013) 897–905.

    Article  Google Scholar 

  13. P. Perreault, G. S. Patience, Fuel 165 (2016) 166–172.

    Article  Google Scholar 

  14. S. K. Gupta, V. Rajakumar, P. Grieveson, Metall. Mater. Trans. B 22 (1991) 711–716.

    Article  Google Scholar 

  15. X. Fu, Y. Wang, F. Wei, Metall. Mater. Trans. A 41 (2010) 1338–1348.

    Article  Google Scholar 

  16. M. D. Karkhanavala, A. C. Momin, Econ. Geol. 54 (1959) 1095–1102.

    Article  Google Scholar 

  17. Y. Chen, J. Alloy. Compd. 257 (1997) 156–160.

    Article  Google Scholar 

  18. Y. Chen, J. Alloy. Compd. 266 (1998) 150–154.

    Article  Google Scholar 

  19. S. K. Gupta, V. Rajakumar, P. Grieveson, Trans. Nonferrous Met. Soc. China 28 (1989) 331–335.

    Google Scholar 

  20. W. Xiao, X. G. Lu, X. L. Zou, X. M. Wei, W. Z. Ding, Trans. Nonferrous Met. Soc. China 23 (2013) 2439–2445.

    Article  Google Scholar 

  21. J. M. Criado, J. Málek, F. J. Gotor, Thermochim. Acta 158 (1990) 205–213.

    Article  Google Scholar 

  22. L. Huang, Y. Chen, G. Liu, S. G. Li, Y. Liu, X. Gao, Energy 87 (1989) 31–40.

    Article  Google Scholar 

  23. J. M. Criado, J. Málek, A. Ortega, Thermochim. Acta 147 (2013) 377–385.

    Article  Google Scholar 

  24. J. Málek, Thermochim. Acta 200 (1992) 257–269.

    Article  Google Scholar 

  25. M. J. Starink, Thermochim. Acta 404 (2003) 163–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-yi Zhang Ph.D. or Xue-wei Lv Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yy., Lv, W., Lv, Xw. et al. Oxidation kinetics of ilmenite concentrate by non-isothermal thermogravimetric analysis. J. Iron Steel Res. Int. 24, 678–684 (2017). https://doi.org/10.1016/S1006-706X(17)30102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30102-4

Key words

Navigation