Skip to main content
Log in

Kinetic characterization of multistep thermal oxidation of carbon/carbon composite in flowing air

Mechanical pencil leads as a model system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal oxidation of carbon/carbon composites in an oxidizing atmosphere is a multistep process regulated by the intrinsic heterogeneity of the solid–gas reaction, the additional heterogeneity of the compositional and structural characteristics of the composite, and how these two properties change as the reaction progresses. By focusing on the overlapping features of the component reaction steps, the kinetic characterization of the multistep kinetic process was studied to reveal the correlation between the thermal oxidation behavior and the compositional and structural characteristics of carbon/carbon composites. Using commercially available mechanical pencil leads as a typical model system for a carbon/carbon composite, the thermal behaviors of two different leads manufactured by different companies were investigated comparatively via thermoanalytical techniques and morphological observations. On the basis of a reaction model considering the different reactivities of the main (graphite) and secondary (carbonized polymer) carbon components, the kinetic features of two partially overlapping reaction steps were revealed via a kinetic deconvolution analysis of the thermoanalytical data for the thermal oxidation process. The kinetic results were correlated with the compositional and structural characteristics of carbon/carbon composites using morphological observations of the partially reacted samples. Herein, the practical usefulness of the kinetic analysis in characterizing carbon/carbon composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dačić B, Marinković S. Kinetics of air oxidation of unidirectional carbon fibres/CVD carbon composites. Carbon. 1987;25(3):409–15.

    Article  Google Scholar 

  2. McKee DW. Oxidation behavior and protection of carbon/carbon composites. Carbon. 1987;25(4):551–7.

    Article  CAS  Google Scholar 

  3. Crocker P, McEnaney B. Oxidation and fracture of a woven 2D carbon-carbon composite. Carbon. 1991;29(7):881–5.

    Article  CAS  Google Scholar 

  4. Shemet VZ, Pomytkin AP, Neshpor VS. High-temperature oxidation behaviour of carbon materials in air. Carbon. 1993;31(1):1–6.

    Article  CAS  Google Scholar 

  5. Han JC, He XD, Du SY. Oxidation and ablation of 3D carbon-carbon composite at up to 3000 °C. Carbon. 1995;33(4):473–8.

    Article  CAS  Google Scholar 

  6. Bacos MP, Dorvaux JM, Lavigne O, Renollet Y. C/C composite oxidation model: I. Morphological experimental investigations. Carbon. 2000;38(1):77–92.

    Article  CAS  Google Scholar 

  7. Bacos MP, Cochon JL, Dorvaux JM, Lavigne O. C/C composite oxidation model: II. Oxidation experimental investigations. Carbon. 2000;38(1):93–103.

    Article  CAS  Google Scholar 

  8. Bacos MP, Dorvaux JM, Lavigne O, Talandier J. C/C composite oxidation model: III. Physical basis, limitations and applications. Carbon. 2000;38(1):105–17.

    Article  CAS  Google Scholar 

  9. Park S-J, Seo M-K. The effects of MoSi2 on the oxidation behavior of carbon/carbon composites. Carbon. 2001;39(8):1229–35.

    Article  CAS  Google Scholar 

  10. Luo R, Cheng J, Wang T. Oxidation behavior and protection of carbon/carbon composites prepared using rapid directional diffused CVI techniques. Carbon. 2002;40(11):1965–72.

    Article  CAS  Google Scholar 

  11. Wu X, Radovic LR. Catalytic oxidation of carbon/carbon composite materials in the presence of potassium and calcium acetates. Carbon. 2005;43(2):333–44.

    Article  CAS  Google Scholar 

  12. Gao P, Guo W, Xiao H, Guo J. Model-free kinetics applied to the oxidation properties and mechanism of three-dimension carbon/carbon composite. Mater Sci Eng, A. 2006;432(1–2):226–30.

    Article  Google Scholar 

  13. Guo W, Xiao H, Yasuda E, Cheng Y. Oxidation kinetics and mechanisms of a 2D-C/C composite. Carbon. 2006;44(15):3269–76.

    Article  CAS  Google Scholar 

  14. Jacobson NS, Curry DM. Oxidation microstructure studies of reinforced carbon/carbon. Carbon. 2006;44(7):1142–50.

    Article  CAS  Google Scholar 

  15. Guo W, Xiao H. Mechanisms and modeling of oxidation of carbon felt/carbon composites. Carbon. 2007;45(5):1058–65.

    Article  CAS  Google Scholar 

  16. Hou X-M, Chou K-C. A simple model for the oxidation of carbon-containing composites. Corros Sci. 2010;52(3):1093–7.

    Article  CAS  Google Scholar 

  17. Bevilacqua M, Babutskyi A, Chrysanthou A. A review of the catalytic oxidation of carbon–carbon composite aircraft brakes. Carbon. 2015;95:861–9.

    Article  CAS  Google Scholar 

  18. Makino A, Araki N, Mihara Y. Combustion of artificial graphite in stagnation flow: estimation of global kinetic parameters from experimental results. Combust Flame. 1994;96(3):261–74.

    Article  CAS  Google Scholar 

  19. Loren Fuller E, Okoh JM. Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110. J Nucl Mater. 1997;240(3):241–50.

    Article  CAS  Google Scholar 

  20. Bews IM, Hayhurst AN, Richardson SM, Taylor SG. The order, Arrhenius parameters, and mechanism of the reaction between gaseous oxygen and solid carbon. Combust Flame. 2001;124(1–2):231–45.

    Article  CAS  Google Scholar 

  21. Zaghib K, Song X, Kinoshita K. Thermal analysis of the oxidation of natural graphite: isothermal kinetic studies. Thermochim Acta. 2001;371(1–2):57–64.

    Article  CAS  Google Scholar 

  22. Breval E, Klimkiewicz M, Agrawal DK, Rusinko F. Pinhole formation and weight loss during oxidation of industrial graphite and carbon. Carbon. 2002;40(7):1017–27.

    Article  CAS  Google Scholar 

  23. Hurt RH, Haynes BS. On the origin of power-law kinetics in carbon oxidation. Proc Combust Inst. 2005;30(2):2161–8.

    Article  Google Scholar 

  24. Yang H-C, Eun H-C, Lee D-G, Jung C-H, Lee K-W. Analysis of combustion kinetics of powdered nuclear graphite by using a non-isothermal thermogravimetric method. J Nucl Sci Technol. 2006;43(11):1436–9.

    Article  CAS  Google Scholar 

  25. Badenhorst H, Focke WW. Geometric effects control isothermal oxidation of graphite flakes. J Therm Anal Calorim. 2012;108(3):1141–50.

    Article  CAS  Google Scholar 

  26. Badenhorst H, Focke W. Comparative analysis of graphite oxidation behaviour based on microstructure. J Nucl Mater. 2013;442(1–3):75–82.

    Article  CAS  Google Scholar 

  27. Badenhorst H, Rand B, Focke W. A generalized solid state kinetic expression for reaction interface-controlled reactivity. Thermochim Acta. 2013;562:1–10.

    Article  CAS  Google Scholar 

  28. Gaddam CK, Vander Wal RL, Chen X, Yezerets A, Kamasamudram K. Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure. Carbon. 2016;98:545–56.

    Article  CAS  Google Scholar 

  29. Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  30. Galwey AK. Structure and order in thermal dehydrations of crystalline solids. Thermochim Acta. 2000;355(1–2):181–238.

    Article  CAS  Google Scholar 

  31. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388(1–2):41–61.

    Article  CAS  Google Scholar 

  32. Pijolat M, Favergeon L, Soustelle M. From the drawbacks of the Arrhenius-f(α) rate equation towards a more general formalism and new models for the kinetic analysis of solid–gas reactions. Thermochim Acta. 2011;525(1–2):93–102.

    Google Scholar 

  33. Branca C, Di Blasi C. Combustion kinetics of secondary biomass chars in the kinetic regime. Energy Fuels. 2010;24(10):5741–50.

    Article  CAS  Google Scholar 

  34. Qiu Y, Collin F, Hurt RH, Külaots I. Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbon. 2016;96:20–8.

    Article  CAS  Google Scholar 

  35. Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007.

    Article  Google Scholar 

  36. Koga N, Suzuki Y, Tatsuoka T. Thermal dehydration of magnesium acetate tetrahydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B. 2012;116(49):14477–86.

    Article  CAS  Google Scholar 

  37. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C. 2012;116(21):11797–807.

    Article  Google Scholar 

  38. Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.

    Article  CAS  Google Scholar 

  39. Koga N, Yamada S, Kimura T. Thermal decomposition of silver carbonate: phenomenology and physicogeometrical kinetics. J Phys Chem C. 2013;117(1):326–36.

    Article  CAS  Google Scholar 

  40. Noda Y, Koga N. Phenomenological kinetics of the carbonation reaction of lithium hydroxide monohydrate: role of surface product layer and possible existence of a liquid phase. J Phys Chem C. 2014;118(10):5424–36.

    Article  CAS  Google Scholar 

  41. Kitabayashi S, Koga N. Thermal decomposition of tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J Phys Chem C. 2015;119(28):16188–99.

    Article  CAS  Google Scholar 

  42. Nakano M, Fujiwara T, Koga N. Thermal decomposition of silver acetate: physico-geometrical kinetic features and formation of silver nanoparticles. J Phys Chem C. 2016;120(16):8841–54.

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  44. Sørensen OT, Rouquerol J. Sample controlled thermal analysis: origin goals, multiple forms, applications and future. Dordrecht: Kluwer; 2003.

    Book  Google Scholar 

  45. Alcalá MD, Criado JM, Gotor FJ, Ortega A, Pérez-Maqueda LA, Real C. Development of a new thermogravimetric system for performing constant rate thermal analysis (CRTA) under controlled atmosphere at pressures ranging from vacuum to 1 bar. Thermochim Acta. 1994;240:167–73.

    Article  Google Scholar 

  46. Koga N, Criado JM. The influence of mass transfer phenomena on the kinetic analysis for the thermal decomposition of calcium carbonate by constant rate thermal analysis (CRTA) under vacuum. Int J Chem Kinet. 1998;30(10):737–44.

    Article  CAS  Google Scholar 

  47. Diánez MJ, Pérez Maqueda LA, Criado JM. Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions. Rev Sci Instrum. 2004;75(8):2620–4.

    Article  Google Scholar 

  48. Criado JM, Pérez-Maqueda LA, Diánez MJ, Sánchez-Jiménez PE. Development of a universal constant rate thermal analysis system for being used with any thermoanalytical instrument. J Therm Anal Calorim. 2007;87(1):297–300.

    Article  CAS  Google Scholar 

  49. Criado JM, Pérez-Maqueda LA. Sample controlled thermal analysis and kinetics. J Therm Anal Calorim. 2005;80(1):27–33.

    Article  CAS  Google Scholar 

  50. Sánchez-Jiménez PE, Pérez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejón A, Criado JM. Quantitative characterization of multicomponent polymers by sample-controlled thermal analysis. Anal Chem. 2010;82(21):8875–80.

    Article  Google Scholar 

  51. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE, Diánez MJ. Applications of sample-controlled thermal analysis (SCTA) to kinetic analysis and synthesis of materials. J Therm Anal Calorim. 2015;120(1):45–51.

    Article  Google Scholar 

  52. Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113(3):1527–41.

    Article  CAS  Google Scholar 

  53. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110(35):17315–28.

    Article  CAS  Google Scholar 

  54. Friedman HL. Kinetics of thermal degradation of cha-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  55. Ozawa T. Applicability of Friedman plot. J Therm Anal. 1986;31:547–51.

    Article  CAS  Google Scholar 

  56. Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59.

    Article  CAS  Google Scholar 

  57. Gotor FJ, Criado JM, Málek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.

    Article  CAS  Google Scholar 

  58. Koga N, Yamada S. Influences of product gases on the kinetics of thermal decomposition of synthetic malachite evaluated by controlled rate evolved gas analysis coupled with thermogravimetry. Int J Chem Kinet. 2005;37(6):346–54.

    Article  CAS  Google Scholar 

  59. Yamada S, Koga N. Kinetics of the thermal decomposition of sodium hydrogen carbonate evaluated by controlled rate evolved gas analysis coupled with thermogravimetry. Thermochim Acta. 2005;431(1–2):38–43.

    Article  CAS  Google Scholar 

  60. Koga N, Goshi Y, Yoshikawa M, Tatsuoka T. Physico-geometrical kinetics of solid-state reactions in an undergraduate thermal analysis laboratory. J Chem Educ. 2014;91(2):239–45.

    Article  CAS  Google Scholar 

  61. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  62. Šesták J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36(6):1997–2007.

    Article  Google Scholar 

  63. Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2011;110(1):5–16.

    Google Scholar 

  64. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.

    Article  Google Scholar 

  65. Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56.

    Article  CAS  Google Scholar 

  66. Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244(1):1–20.

    Article  CAS  Google Scholar 

  67. Galwey AK, Mortimer M. Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int J Chem Kinet. 2006;38(7):464–73.

    Article  CAS  Google Scholar 

  68. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  69. Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18.

    Article  CAS  Google Scholar 

  70. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  71. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–23.

    Article  CAS  Google Scholar 

  72. Avrami M. Granulation, kinetics of phase change. III. Phase change, and microstructure. J Chem Phys. 1941;9(2):177–84.

    Article  CAS  Google Scholar 

  73. Barmak K. A commentary on: “reaction kinetics in processes of nucleation and growth”. Metall Mater Trans A. 2010;41(11):2711–75.

    Article  Google Scholar 

  74. Spencer WD, Topley B. Reaction velocity in the system Ag2CO3 ↔ Ag2O + CO2. Trans Faraday Soc. 1931;27:94–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by JSPS KAKENHI Grant Nos. 25242015 and 16K00966.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Koga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, K., Ueta, Y., Hara, D. et al. Kinetic characterization of multistep thermal oxidation of carbon/carbon composite in flowing air. J Therm Anal Calorim 128, 891–906 (2017). https://doi.org/10.1007/s10973-016-5993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5993-6

Keywords

Navigation