Skip to main content
Log in

Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A modified peak-deconvolution procedure for complex crystallization processes was introduced. The method is based on the constrained curve-fitting technique using the Fraser–Suzuki (FS) function, where the FS asymmetry parameter a 3 correlates with the value of the Johnson–Mehl–Avrami (JMA) kinetic parameter m. The correlation was verified for an extensive number of theoretically simulated JMA curves; in addition, the dependencies of the a 3 parameter on other kinetic variables (E, A, q +) were quantified. The suggested deconvolution procedure was tested on two glassy systems with different overlay degree of the involved overlapping surface and bulk crystallization processes. In both cases, the kinetic analysis of deconvoluted data provided reasonable, consistent and accurate results. However, certain level of knowledge and experience was needed in order to correctly recognize and consequently account for all deviations from the theoretical behavior caused by thermal gradients or imperfections of the data acquisition process. As the input data for the fitting procedure can be in any form equivalent to the dα/dT temperature dependence, the method seems to be highly universal and may be applied to data obtained by various TA techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  2. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  3. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  4. Sempere J, Nomen R, Serra R, Soravilla J. The NPK method—an innovative approach for kinetic analysis of data from thermal analysis and calorimetry. Thermochim Acta. 2002;388:407–14.

    Article  CAS  Google Scholar 

  5. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56:843–9.

    Article  CAS  Google Scholar 

  6. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab. 2009;94:2079–85.

    Article  CAS  Google Scholar 

  7. Perez-Maqueda LA, Criado JM, Malek J. Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non Cryst Solids. 2003;320:84–91.

    Article  CAS  Google Scholar 

  8. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–94.

    Article  CAS  Google Scholar 

  9. Lesnikovich AI, Levchik SV. Isoparametric kinetic relations for chemical transformations in condensed substances (analytical survey)—reactions involving participation of solid substances. J Therm Anal. 1985;30:677–702.

    Article  CAS  Google Scholar 

  10. Perejón A, Sánchéz-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  Google Scholar 

  11. Fraser RDB, Suzuki E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38:1770–3.

    Article  CAS  Google Scholar 

  12. Fraser RDB, Suzuki E. Resolution of overlapping bands—functions for simulating band shapes. Anal Chem. 1969;61:37–9.

    Article  Google Scholar 

  13. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416–42.

    Google Scholar 

  14. Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  15. Avrami M. Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.

    Article  Google Scholar 

  16. Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.

    Article  Google Scholar 

  17. Šesták J. Thermophysical properties of solids. Their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  18. Svoboda R, Málek J. Extended study of crystallization kinetics for Se–Te glasses. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2347-x.

  19. Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.

    Google Scholar 

  20. Runge C. Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik. 1901;46:224–43.

    Google Scholar 

  21. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

  22. Barták J, Svoboda R, Málek J. Electrical properties and crystallization kinetics of Se–Te chalcogenide glasses. J Appl Phys (accepted).

  23. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  24. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. New York: Wiley; 1964.

    Google Scholar 

  25. Svoboda R, Málek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non-Cryst Solid. 2012;358:276–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation under Project No. P106/11/1152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Svoboda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, R., Málek, J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim 111, 1045–1056 (2013). https://doi.org/10.1007/s10973-012-2445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2445-9

Keywords

Navigation