Skip to main content
Log in

Thermal properties and crystallization of BaO–MoO3–P2O5 glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior and crystallization of barium molybdate-phosphate glasses were studied in two compositional series, namely A: (100 − x)Ba(PO3)2xMoO3 (with x = 0–70 mol%) and B: 50BaO–yMoO3–(50 − y)P2O5 (with y = 0–15 mol% MoO3). Thermal properties were studied with differential thermal analysis and dilatometry. Glass transition temperature increases in series A in the range of 0–40 mol% MoO3 and then decreases with a further increase in MoO3 content, whereas the thermal expansion coefficient in series A reveals a minimum at 50 mol% MoO3. These trends are not observed in series B, where the glass transition temperature increases in the range of 0–15 mol% MoO3 and the thermal expansion coefficient almost does not change. Crystallization of these glasses was studied by X-ray diffraction analysis, Raman and 31P MAS NMR spectroscopy. Large thermal stability of glass with a composition 35BaO–30MoO3–35P2O5 toward crystallization was demonstrated. Crystallization of glasses resulted in the formation of the compound Ba(MoO2)2(PO4)2 in this ternary system. Raman spectroscopy also provided information on the formation of glass-crystalline samples in some studied compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. van Wazer JR. Phosphorus and Its Compounds, vol. 1. New York: Interscience; 1958.

    Google Scholar 

  2. Brow RK. Review: the structure of simple phosphate glasses. J Non-Cryst Solids. 2000;263&264:1–28.

    Article  CAS  Google Scholar 

  3. Koudelka L, Kalenda P, Mošner P, Montagne L, Revel B. Structure-property relationships in barium borophosphate glasses modified with niobium oxide. J Non-Cryst Solids. 2016;437:64–71.

    Article  CAS  Google Scholar 

  4. Santagneli SH, de Araujo CC, Strojek W, Eckert H, Poirier G, Ribeiro SJL, Messaddeq Y. Structural studies of NaPO3–MoO3 glasses by solid-state nuclear magnetic resonance and Raman spectroscopy. J Phys Chem B. 2007;111:101–9.

    Article  Google Scholar 

  5. de Araujo CC, Strojek W, Zhang L, Eckert H, Poirier G, Riberio SJL, Messaddeq Y. Structural studies of NaPO3–WO3 glasses by solid state NMR and Raman spectroscopy. J Mater Chem. 2006;16:3277–84.

    Article  Google Scholar 

  6. Kitheri J. Non-isothermal crystallization in BaO–Fe2O3–P2O5 glasses, A comparison with iron phosphate and Cs2O–Fe2O3–P2O5 glasses. J Therm Anal Calorim. 2017;. https://doi.org/10.1007/s10973-017-6361-x.

    Google Scholar 

  7. Sinouth H, Bih L, Manoun B, Lazor P. Thermal analysis and crystallization of the glasses inside the BaO–SrO–TiO2–NaPO3 system. J Therm Anal Calorim. 2017;128:883–90.

    Article  Google Scholar 

  8. Poirier G, Ottoboni FS, Cassanjes FC, Remonte A, Messaddeq Y, Ribeiro SJL. Redox behavior of molybdenum and tungsten in phosphate glasses. J Phys Chem B. 2008;112:4481–7.

    Article  CAS  Google Scholar 

  9. Koudelka L, Rösslerová I, Holubová J, Mošner P, Montagne L, Revel B. Structural study of PbO–MoO3–P2O5 glasses by Raman and NMR spectroscopy. J Non-Cryst Solids. 2011;357:2816–21.

    Article  CAS  Google Scholar 

  10. Rösslerová I, Koudelka L, Černošek Z, Mošner P, Beneš L. Thermal properties and crystallization of PbO–MoO3–P2O5 glasses. J Mater Sci. 2011;46:6751–7.

    Article  Google Scholar 

  11. Masse R, Averbuch-Pouchot MT, Durif A. Crystal structures of phosphomolybdyl salts: Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2. J Solid State Chem. 1985;58:157–63.

    Article  CAS  Google Scholar 

  12. Koudelka L, Kalenda P, Mošner P, Holubová J, Montagne L, Revel B. Structural study of BaO–MoO3–P2O5 glasses by Raman and NMR spectroscopy. J Non-Cryst Solids. 2017;476:114–21.

    Article  CAS  Google Scholar 

  13. Joint Committee on powder diffraction standards, Swarthmore, PA, USA. International Centre of Diffraction Data.

  14. Lide DR. Handbook of Chemistry and Physics. Boca Raton: CRC Press; 2001. p. 9–52.

    Google Scholar 

  15. de Wolff PM. A simplified criterion for the reliability of a powder pattern indexing. J Appl Crystallogr. 1968;1:108–13.

    Article  Google Scholar 

  16. Smoth GS, Snyder RL. A criterion for rating powder diffraction patterns and evaluating the reliability of powder-patteer indexing. J Appl Crystallogr. 1979;12:60–5.

    Article  Google Scholar 

  17. Laugier J, Bochu B. LMGP-Suite, ENSP/Laboratoire desMateriaux et duGenie Physique, Saint Martin d’Heres, France, http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/. Accessed Dec 2007.

  18. Varshneya AK. Fundamentals of Inorganic glasses. 2nd ed. Sheffield: The Society of Glass Technology; 2006. p. 19.

    Google Scholar 

  19. Ray CS, Day DE. Identifying internal and surface crystallization by differential thermal analysis for the glass-to-crystal transformations. Thermochim Acta. 1996;280–281:163–74.

    Article  Google Scholar 

  20. Chowdari BVR, Tan KL, Chia WT, Gopalakrishnan R. Thermal, physical, electrical and XPS studies of the Li2O:P2O5:MoO3 glass system. J Non-Cryst Solids. 1991;128:18–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the NMR spectra measurement to Bertrand Revel from the University of Lille, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Koudelka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenda, P., Koudelka, L., Mošner, P. et al. Thermal properties and crystallization of BaO–MoO3–P2O5 glasses. J Therm Anal Calorim 131, 2303–2310 (2018). https://doi.org/10.1007/s10973-017-6864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6864-5

Keywords

Navigation