Skip to main content
Log in

A comprehensive study on co-pyrolysis of bituminous coal and pine sawdust using TG

Reactivity, product yield, and kinetic constant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A sample consisting of woody biomass and bituminous coal was pyrolyzed in a lab-scale furnace in a nitrogen atmosphere with the temperature increasing by different heating rates of 5, 10, and 50 °C min−1 until the furnace wall temperature reached 900 °C. Five blending ratios (BRs) of coal–biomass were tested. For each BR, the mass loss of the sample and mole fractions of the gaseous species evolved from the sample were measured using a thermogravimetry (TG) and a real-time gas analyzer (GA). Reactivity, product yield, and activation energy were considered as index parameters to co-pyrolysis. While synergy (the difference between the experimental data and calculated results obtained using an additive model) of the reactivity of co-pyrolysis was observed only at specific temperatures, the TG results showed synergy at temperatures between 450 and 500 °C compared to between 450 and 600 °C seen with the GA method for all pyrolyzed gases, and especially between 350 and 650 °C for H2. While there was no synergy in the char yield of the co-pyrolysis, the liquid and total gas exhibited synergy for all three BRs. The pre-exponential factors and the activation energies of BRs of 0.25, 0.5, and 0.75 were obtained using a kinetic study of co-pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stiegel GJ, Maxwell RC. Gasification technologies: the path to clean, affordable energy in the 21st century. Fuel Process Technol. 2001;71:79–97.

    Article  CAS  Google Scholar 

  2. Franco A, Diaz AR. The future challenges for clean coal technologies: joining efficiency increase and pollutant emission control. Energy. 2009;34:348–54.

    Article  CAS  Google Scholar 

  3. Yuan S, Dai Z, Zhou Z, Chen X, Yu G, Wang F. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char. Bioresour Technol. 2012;109:188–97.

    Article  CAS  Google Scholar 

  4. Gao C, Vejahati F, Katalambula H, Gupta R. Co-gasification of biomass with coal and oil sand coke in a drop tube furnace. Energy Fuels. 2010;24:232–40.

    Article  CAS  Google Scholar 

  5. Fermoso J, Gil MV, Pevida C, Pis JJ, Rubiera F. Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars. Chem Eng J. 2010;161:276–84.

    Article  CAS  Google Scholar 

  6. Long HA, Wang LT. Case studies for biomass/coal co-gasification in IGCC applications. Proceeding of ASME Turbo Expo 2011.

  7. Jones JM, Kubacki M, Kubica K, Ross AB, Williams A. Devolatilisation characteristics of coal and biomass blends. J Anal Appl Pyrolysis. 2005;74:502–11.

    Article  CAS  Google Scholar 

  8. Zhang L, Xu S, Zhao W, Liu S. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel. 2007;86:353–9.

    Article  CAS  Google Scholar 

  9. Haykiri-Acma H, Yaman S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel. 2007;86:373–80.

    Article  CAS  Google Scholar 

  10. Ulloa CA, Gordon AL, Garcia XA. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Process Technol. 2009;90:583–90.

    Article  CAS  Google Scholar 

  11. Park DK, Kim SD, Lee SH, Lee JG. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour Technol. 2010;101:6151–6.

    Article  CAS  Google Scholar 

  12. Quan C, Xu S, An Y, Liu X. Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor. J Therm Anal Calorim. 2014;117:817–23.

    Article  CAS  Google Scholar 

  13. Messri C, Moghtaderi B. Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes. Biomass Bioenerg. 2002;23:55–66.

    Article  Google Scholar 

  14. Kastanaki E, Vamvuka D, Grammelis P, Kakaras E. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process Technol. 2002;77–78:159–66.

    Article  Google Scholar 

  15. Vuthaluru HB. Investigation into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Bioresour Technol. 2004;92:187–95.

    Article  CAS  Google Scholar 

  16. Sutcu H. Pyrolysis by thermogravimetric analysis of blends of peat with coals of different characteristics and biomass. J Chin Inst Chem Eng. 2007;38:245–9.

    Article  CAS  Google Scholar 

  17. Sadhukhan AK, Gupta P, Goyal T, Saha RK. Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis. Bioresour Technol. 2008;99:8022–6.

    Article  CAS  Google Scholar 

  18. Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi X, Lim CJ, Ellis N, Grace JR. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel. 2014;117:1204–14.

    Article  CAS  Google Scholar 

  19. Guo Z, Bai Z, Bai J, Wang Z, Li W. Synergistic effects during co-pyrolysis and liquefaction of biomass and lignite under syngas. J Therm Anal Calorim: DOI; 2015. doi:10.1007/s10973-014-4277-2.

    Google Scholar 

  20. Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q. Copyrolysis behaviors and kinetics of plastics-biomass blends through thermogravimetric analysis. J Therm Anal Calorim. 2014;115:227–35.

    Article  CAS  Google Scholar 

  21. Aboulkas A, Harfi KE. Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim. 2009;95:1007–13.

    Article  CAS  Google Scholar 

  22. Aboulkas A, Harfi KE, Bouadili AE, Nadifiyine M. Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate). J Therm Anal Calorim. 2010;100:323–30.

    Article  CAS  Google Scholar 

  23. Holstein A, Bassilakis R, Wojtowicz MA, Serio MA. Kinetics of methane and tar evolution during coal pyrolysis. Proc Combust Inst. 2005;30:2177–85.

    Article  Google Scholar 

  24. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  25. Seo DK, Park SS, Hwang J, Yu TU. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2010;89:66–73.

    Article  CAS  Google Scholar 

  26. Seo DK, Park SS, Kim YT, Hwang J, Yu TU. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2011;92:209–16.

    Article  CAS  Google Scholar 

  27. Perry SW, Chilton CN. Chemical engineers handbook. 5th ed. New York: McGraw-Hill; 1973.

    Google Scholar 

  28. Asuero AG, Gonzalez G. Fitting straight lines with replicated observations by linear regression. III. Weighting data. Crit Rev Anal Chem. 2007;37:143–72.

    Article  CAS  Google Scholar 

  29. Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:87–97.

    Article  CAS  Google Scholar 

  30. Borah D, Barua M, Baruah MK. Dependence of pyrite concentration on kinetics and thermodynamics of coal pyrolysis in non-isothermal systems. Fuel Process Technol. 2005;86:977–93.

    Article  CAS  Google Scholar 

  31. Otero M, Calvo LF, Gil MV, Garcia AI, Moran A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;9:6311–9.

    Article  Google Scholar 

  32. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  33. Blazej A, Kosik M. Phytomass: a raw material for chemistry and biotechnology. Bratislava: Ellis Horwood, series; 1993.

    Google Scholar 

  34. Smith LH, Smoot LD, Fletcher TH. The structure and reaction process of coal. New York: Plenum Press; 1994.

    Book  Google Scholar 

  35. Solomon PR, Fletcher TH, Pugmire RJ. Progress in coal pyrolysis. Fuel. 1993;72:587–97.

    Article  CAS  Google Scholar 

  36. Li C, Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew Sust Energ Rev. 2009;13:594–604.

    Article  CAS  Google Scholar 

  37. Li CZ, Sathe C, Kershaw JR, Pang Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal. Fuel. 2000;79:427–38.

    Article  CAS  Google Scholar 

  38. Shenqi X, Zhijie Z, Jie X, Guangsuo Y, Fuchen W. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases. Fuel. 2011;90:1723–30.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Converged Energy Materials Research Center (CEMRC) of the Republic of Korea. The authors gratefully acknowledge this support (NE-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H.J., Seo, D.K., Park, S.S. et al. A comprehensive study on co-pyrolysis of bituminous coal and pine sawdust using TG . J Therm Anal Calorim 120, 1867–1875 (2015). https://doi.org/10.1007/s10973-015-4470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4470-y

Keywords

Navigation