Skip to main content
Log in

Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of fullerene (C60) and aluminum hydroxide (ATH)/C60 combination on the thermal stability, flame retardancy and mechanical properties of styrene–butadiene–styrene block copolymer (SBS) were investigated. Adding small amount (0.5–2 mass%) of C60 into SBS matrix raised the initial decomposition temperature of the composites slightly, while C60 alone had little influence on the flame-retardant behavior. In SBS/ATH/C60 system, however, the addition of C60 significantly improved the UL-94 vertical combustion grade and limiting oxygen index. The total content of the flame retardant in SBS/ATH/C60 system (56 mass%) was lower than that in SBS/ATH system (60 mass%) when UL-94 reached V0 level. Consequently, the adverse effects on the mechanical properties due to the high level of flame-retardant loading reduced. Meanwhile, the data obtained from cone calorimetric test indicated that C60 can not only reduce the heat release rate, but also raise the char residue of SBS/ATH composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Florian S, Novak I. Properties of pressure-sensitive adhesives based on styrene copolymers. J Mater Sci. 2004;39:649–51.

    Article  CAS  Google Scholar 

  2. Wu G, Jiang Y, Ye L, Zeng S, Yu P, Xu W. A novel UV-crosslinked pressure-sensitive adhesive based on photoinitiator-grafted SBS. Int J Adhes Adhes. 2010;30:43–6.

    Article  Google Scholar 

  3. Lu X, Isacsson U. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel. 1998;77:961–72.

    Article  CAS  Google Scholar 

  4. Valtorta D, Poulikakos LD, Partl MN, Mazza E. Rheological properties of polymer modified bitumen from long-term field tests. Fuel. 2007;86:938–48.

    Article  CAS  Google Scholar 

  5. Romera R, Santamaria A, Pena JJ, Munoz ME, Barral M, Garcia E. Rheological aspects of the rejuvenation of aged bitumen. Rheol Acta. 2006;45:474–8.

    Article  CAS  Google Scholar 

  6. Bowers BF, Huang BS, Shu X, Miller BC. Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR. Constr Build Mater. 2014;50:517–23.

    Article  Google Scholar 

  7. Ristolainen N, Hippi U, Seppala J, Nykanen A, Ruokolainen J. Properties of polypropylene/aluminum trihydroxide composites containing nanosized organoclay. J Polym Eng Sci. 2005;45:1568–75.

    Article  CAS  Google Scholar 

  8. Fabien C, Serge B, Michel LB, René D, Michel F. Charring of fire retarded ethylene vinyl acetate copolymer—magnesium hydroxide/zinc borate formulations. Polym Degrad Stab. 2000;69:83–92.

    Article  Google Scholar 

  9. Titelman GI, Gonen Y, Keidar Y, Bron S. Discolouration of polypropylene-based compounds containing magnesium hydroxide. Polym Degrad Stab. 2002;77:345–52.

    Article  CAS  Google Scholar 

  10. Kozlowski R, Wladyka PM. The flame retardant for polypropylene using magnesium hydroxide with intumescent component. Mol Cryst Liq Cryst Sci Technol. 1999;354:195–206.

    Article  Google Scholar 

  11. Rothon RN, Hornsby PR. Flame retardant effects of magnesium hydroxide. Polym Degrad Stab. 1996;54:383–5.

    Article  CAS  Google Scholar 

  12. Chiu S, Wang W. Dynamic flammability and foxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. J Appl Polym Sci. 1998;67:989–95.

    Article  CAS  Google Scholar 

  13. Shah AUR, Lee DW, Wang YQ, Wasy A, Ham KC, Jayaraman K, Kim BS, Song JI. Effect of concentration of ATH on mechanical properties of polypropylene/aluminium trihydrate (PP/ATH) composite. J Trans Nonferr Met Soc China. 2014;24:81–9.

    Article  Google Scholar 

  14. Joanna L, Katarzyna M, Henryk R. Comparison of the effect of montmorillonite, magnesium hydroxide and a mixture of both on the flammability properties and mechanism of char formation of HDPE composites. Polym Degrad Stab. 2012;97:2581–93.

    Article  Google Scholar 

  15. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science. 1991;254:1183–5.

    Article  CAS  Google Scholar 

  16. Gan LB, Huang SH, Zhang X, Zhang AX, Cheng BC, Cheng H, Li XL, Shang G. Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc. 2002;124:13384–5.

    Article  CAS  Google Scholar 

  17. Tang BZ, Leung SM, Peng H, Yu NT. Direct fullerenation of polycarbonate via simple polymer reactions. Macromolecules. 1997;30:2848–52.

    Article  CAS  Google Scholar 

  18. Cao T, Webber SE. Free radical copolymerization of styrene and C60. Macromolecules. 1996;29:3826–30.

    Article  CAS  Google Scholar 

  19. Fang ZP, Song PA, Tong LF, Guo ZH. Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites. Thermochim Acta. 2008;473:106–8.

    Article  CAS  Google Scholar 

  20. Song PA, Zhu Y, Tong LF, Fang ZP. C60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology. 2008;19:225707.

    Article  Google Scholar 

  21. Zhao LP, Song PA, Cao ZH, Fang ZP, Guo ZH. Thermal stability and rheological behaviors of high-density polyethylene/fullerene nanocomposites. J Nanomater. 2012;10:340962.

    Google Scholar 

  22. Zhao ZP, Cao ZH, Fang ZP, Guo ZH. Influence of fullerene on the kinetics of thermal and thermo-oxidative degradation of high-density polyethylene by capturing free radicals. J Therm Anal Calorim. 2013;114:1287–94.

    Article  CAS  Google Scholar 

  23. Zhao LP, Guo ZH, Ran SY, Cao ZH, Fang ZP. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J Therm Anal Calorim. 2014;115:1235–44.

    Article  CAS  Google Scholar 

  24. Silvestru BM, Mihai B, Cornelia V. Thermal and thermo-oxidative behaviour of butadiene–styrene copolymers with different architectures. Polym Degrad Stab. 2005;89:501–12.

    Article  Google Scholar 

  25. Norman SA, Michele E, Arthur W, Cristopher ML, Despina M, Juan B, Maria AMZ. Degradation and stabilisation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Polym Degrad Stab. 2001;71:113–22.

    Google Scholar 

  26. Xu JB, Zhang AM, Zhou T, Cao XJ, Xie ZN. A study on thermal oxidation mechanism of styrene–butadiene–styrene block copolymer (SBS). Polym Degrad Stab. 2007;92:1682–91.

    Article  CAS  Google Scholar 

  27. Chen FZ, Qian JL. Studies on the thermal degradation of polybutadiene. Fuel Process Technol. 2000;67:53–60.

    Article  CAS  Google Scholar 

  28. Babrauskas V. Development of cone calorimeter, NBSIR 82-2611. Gaitherburg, MD: US Bureau of Standards; 1982.

    Google Scholar 

  29. Wang ZZ, Qu BJ, Fan WC, Huang P. Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. J Appl Polym Sci. 2001;81:206–14.

    Article  CAS  Google Scholar 

  30. Ondrej G, Henrich L. Flammability parameters of wood tested on a cone calorimeter. Polym Degrad Stab. 2001;74:427–32.

    Article  Google Scholar 

  31. Moran PD. Aluminum hydroxide retardant. Fire Mater. 1987;2:37–9.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51073140) and the Ningbo Science and Technology Innovation Team (No. 2015B11005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Ran, S., Hu, H. et al. Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim 125, 199–204 (2016). https://doi.org/10.1007/s10973-016-5354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5354-5

Keywords

Navigation