Skip to main content
Log in

Thermal analysis and volume properties of the systems (LiF–CaF2)eut.–LnF3 (Ln = Sm, Gd, and Nd) up to 1273 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Systems (LiF–CaF2)eut.–LnF3 (Ln = Sm, Gd, and Nd) were investigated by means of thermal analysis and density measurements. Temperatures of primary crystallisation were measured and solidified samples were analysed by XRD as well as by SEM images and EDX mapping of the solidified samples. Densities of individual melts were measured by hydrostatic weighting (Archimedean method). Consequently, molar volumes were calculated. Unusual behaviour was observed in all three cases, when molar volumes decrease with initial LnF3 additions up to 1 mol % of LnF3. Further LnF3 additions result in molar volumes increase. In the case of GdF3 system, anomalous molar volume behaviour was observed: over 1 mol % of GdF3 molar volume is higher at lower temperatures. Partial molar volumes of LnF3 components were analysed by both simple linear or polynomial regression and multicomponent polynomial regression using least square parameters minimisation procedure. With increasing temperature, partial molar volumes of LnF3 decrease even to negative values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim. 2015;122(1):3–9. doi:10.1007/s10973-015-4715-9.

    Article  Google Scholar 

  2. Peng Q, Yang X, Ding J, Wei X, Yang J. Thermodynamic performance of the NaNO3–NaCl–NaNO2 ternary system. J Therm Anal Calorim. 2013;115(2):1753–8. doi:10.1007/s10973-013-3389-4.

    Article  Google Scholar 

  3. Wang J, Lai M, Han H, Ding Z, Liu S, Zeng D. Thermodynamic modeling and experimental verification of eutectic point in the LiNO3–KNO3–Ca(NO3)2 ternary system. J Therm Anal Calorim. 2014;119(2):1259–66. doi:10.1007/s10973-014-4218-0.

    Article  Google Scholar 

  4. Thoma RE. Rare—earth halides. Tennessee: Oak Ridge National Laboratory Reactor Chemistry Division, U.S. Atomic Energy Commission, Oak Ridge National Laboratory 1965.

  5. Capelli E, Benes O, Beilmann M, Konings RJM. Thermodynamic investigation of the LiF–ThF4 system. J Chem Thermodyn. 2013;58:110–6. doi:10.1016/j.jct.2012.10.013.

    Article  CAS  Google Scholar 

  6. Barborík P, Vasková Z, Boča M, Priščák J. Physicochemical properties of the system (LiF + NaF + KF(eut.) + Na7Zr6F31): phase equilibria, density and volume properties, viscosity and surface tension. J Chem Thermodyn. 2014;76:145–51. doi:10.1016/j.jct.2014.03.024.

    Article  Google Scholar 

  7. Boca M, Danielik V, Ivanova Z, Miksikova E, Kubikova B. Phase diagrams of the KF–K2TaF7 and KF–Ta2O5 systems. J Therm Anal Calorim. 2007;90:159–65. doi:10.1007/s10973-006-7700-5.

    Article  CAS  Google Scholar 

  8. Chrenkova M, Danielik V, Kubikova B, Danek V. CALPHAD: phase diagram of the system LiF–NaF–K2NbF7. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry. 2003;27(1):19–26. doi:10.1016/s0364-5916(03)00027-0.

    Article  CAS  Google Scholar 

  9. Dvorak V, Danielik V, Matal O, Chrenkova M, Boca M. Phase diagram of the system NaF–SnF2. J Therm Anal Calorim. 2008;91(2):541–4. doi:10.1007/s10973-006-8320-9.

    Article  CAS  Google Scholar 

  10. Kubikova B, Danek V, Gaune-Escard M. Phase equilibria in the molten system KF–K2NbF7–Nb2O5. Zeitschrift Fur Physikalische Chemie-Int J Res Phys Chem Chem Phys. 2006;220(6):765–73. doi:10.1007/s10967-014-3100-7.

    CAS  Google Scholar 

  11. Kubikova B, Kucharik M, Vasiljev R, Boca M. Phase equilibria, volume properties, surface tension, and viscosity of the (FLiNaK)(eut) + K2NbF7 Melts. J Chem Eng Data. 2009;54(7):2081–4. doi:10.1021/je800979q.

    Article  CAS  Google Scholar 

  12. Kubikova B, Mackova I, Boca M. Phase analysis and volume properties of the (LiF–NaF–KF)(eut)–K2ZrF6 system. Monatshefte Fur Chemie. 2013;144(3):295–300. doi:10.1007/s00706-012-0886-2.

    Article  CAS  Google Scholar 

  13. Kubíková B, Mlynáriková J, Vasková Z, Jeřábková P, Boča M. Phase analysis and density of the system K2ZrF6–K2TaF7. Monatshefte für Chemie – Chem Monthly. 2014;145(8):1247–52. doi:10.1007/s00706-014-1214-9.

    Article  Google Scholar 

  14. Simko F, Danek V. Cryoscopy in the system Na3AlF6–Fe2O3. Chem Papers-Chem Zvesti. 2001;55(5):269–72.

    CAS  Google Scholar 

  15. Silny A. Zariadenie na meranie hustoty kvapalín. Sdelovaci Technika. 1990;38:101–5.

    Google Scholar 

  16. Boca M, Ivanova Z, Kucharik M, Cibulkova J, Vasiljev R, Chrenkova M. Density and surface tension of the system KF-K2TaF7-Ta2O5. Zeitschrift Fur Physikalische Chemie-Int J Res Phys Chem Chem Phys. 2006;220(9):1159–80. doi:10.1524/zpch.2006.220.9.1159.

    CAS  Google Scholar 

  17. Chrenkova M, Boca M, Kucharik M, Danek V. Density of melts of the system KF-K2MoO4-SiO2. Chem Papers-Chem Zvesti. 2002;56(5):283–7.

    CAS  Google Scholar 

  18. Cibulkova J, Chrenkova M, Boca M. Density of the system KF + K2NbF7 + Nb2O5. J Chem Eng Data. 2005;50(2):477–80. doi:10.1021/je049702k.

    Article  CAS  Google Scholar 

  19. Cibulkova J, Chrenkova M, Vasiljev R, Kremenetsky V, Boca M. Density and viscosity of the (LiF + NaF + KF)(eut)(1) + K2TaF7(2) + Ta2O5(3) melts. J Chem Eng Data. 2006;51(3):984–7. doi:10.1021/je050490g.

    Article  CAS  Google Scholar 

  20. Kostenska I, Vrbenska J, Malinovsky M. The equilibrium “solidus—liquidus” in the system lithium fluoride—calcium fluoride. Chem Zvesti. 1974;28(4):531–8.

    CAS  Google Scholar 

  21. Roake WE. The Systems CaF2-LiF and CaF2-LiF-MgF2. J Electrochem Soc. 1957;104(11):661–2.

    Article  CAS  Google Scholar 

  22. Stankus SV, Khairulin RA, Lyapunov KM. Thermal properties and phase transitions of heavy rare-earth fluorides. High Temp High Pressures. 2000;32:467–72. doi:10.1068/htwu216.

    Article  CAS  Google Scholar 

  23. Thoma RE, Brunton GD, Penneman RA, Keenan TK. Equilibrium relations and crystal structure of lithium fluorolanthanate phases. Inorg Chem. 1970;9(5):1096–100. doi:10.1021/ic50087a019.

    Article  CAS  Google Scholar 

  24. Thoma RE, Insley H, Hebert GM. The sodium fluoride-lanthanide trifluoride systems. Inorg Chem. 1966;5(7):1222–9. doi:10.1021/ic50041a032.

    Article  CAS  Google Scholar 

  25. Dergunov EP. Complex formation between fluorides of alkali metals and of lanthanide-group metals. Dokl Akad Nauk SSSR. 1952;85(5):1025–8.

    CAS  Google Scholar 

  26. Sobolev BP, Fedorov PP. Phase diagrams of the CaF2–(Y, Ln)F3 systems I. Experimental. J Less-Common Met. 1978;60(1):33–46.

  27. Sobolev BP, Fedorov PP, Seiranyan KB, Tkachenko NL. On the problem of polymorphism and fusion of lanthanide trifluorides. II. Interaction of LnF3 with MF2 (M = calcium, strontium, barium), change in structural type in the LnF3 series, and thermal characteristics. J Solid State Chem. 1976;17(1–2):201–12. doi:10.1016/0022-4596(76)90221-8.

  28. Gogadze NG, Ippolitov EG, Zhigarnovskii BM. Liquid and solid phase diagrams of calcium fluoride-samarium fluoride and calcium fluoride-dysprosium fluoride above 800.deg. Zh Neorg Khim. 1972;17(2):576–7.

    CAS  Google Scholar 

  29. Rotereau K, Daniel P, Desert A, Gesland JY. The high-temperature phase transition in samarium fluoride, SmF3: structural and vibrational investigation. J Phys: Condens Matter. 1998;10(6):1431–46. doi:10.1088/0953-8984/10/6/026.

    CAS  Google Scholar 

  30. Janz GJ, Tomkins RPT. Physical properties data compilation relevant to energy storage. Washington, DC: National Bureau of Standards; 1981.

    Google Scholar 

  31. Vasková Z, Kontrík M, Mlynáriková J, Boča M. Density of low-temperature KF–AlF3 Aluminum Baths with Al2O3 and AlPO4 Additives. Metall Mater Trans B. 2015;46(1):485–93. doi:10.1007/s11663-014-0218-5.

    Article  Google Scholar 

  32. Simko F, Mackova I, Netriova Z. Density of the systems (NaF/AlF3)-AlPO4 and (NaF/AlF3)-NaVO3. Chem Pap. 2011;65(1):85–9. doi:10.2478/s11696-010-0074-y.

    Article  CAS  Google Scholar 

  33. Mlynarikova J, Boca M, Kipsova L. The role of the alkaline cations in the density and volume properties of the melts MF–K2NbF7 (MF = LiF–NaF, LIF–KF and NaF–KF). J Mol Liq. 2008;140(1–3):101–7. doi:10.1016/j.molliq.2008.02.002.

    Article  CAS  Google Scholar 

  34. Brunton GD, Insley H, McVey TN, Thoma RE. Crystallographic data for some metal fluorides, chlorides, and oxides Oak Ridge Natl. Lab. Rep. ORNL (U.S.) 1965.

  35. Fedorov PP, Sizganov YG, Sobolev PP, Shvanner M. Phase diagram of the system CaF2–GdF3. J Therm Anal. 1975;8(2):239–45.

    Article  CAS  Google Scholar 

  36. Otroshchenko LP, Aleksandrov BP, Maksimov BA, Simonov VI, Sobolev BP. Stabilization of the high-symmetric hexagonal form of tysonite in the nonstoichiometric phase gadolinium calcium fluoride (Gd0.8Ca0.2F2.8). Soviet Phys Crystallogr. 1985;30(4):383–6.

  37. Grigor’eva NB, Maksimov BA, Sobolev BP. X-ray diffraction study of Ca0.88Gd0.12F2.12 single crystals with a modified fluorite structure. Crystallogr Rep. 2000;45(5):718–20.

    Article  Google Scholar 

  38. Klimm D, Ranieri IM, Bertram R, Baldochi SL. The phase diagram YF3–GdF3. Mater Res Bull. 2008;43:676–81. doi:10.1016/j.materresbull.2007.04.004.

    Article  CAS  Google Scholar 

  39. Pyrina VK, Prostakov ME. Interaction of potassium tetrafluoroborate with potassium, lanthanum, and neodymium fluorides in a melt. Zh Neorg Khim. 1975;20(4):1140–2.

    CAS  Google Scholar 

  40. Nafikova SK, Reshetnikova LP, Novoselova AV. Rubidium fluoride-neodymium fluoride system. Zh Neorg Khim. 1976;21(9):2521–4.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Assistance Agency under contract No. APVV-0460-10 and by the Slovak Grant Agency VEGA 2/0116/14 and VEGA 2/0095/12. This contribution/publication is the result of the project implementation: “Centre for materials, layers and systems for applications and chemical processes under extreme conditions—Stage II”, ITMS code 26240120021, supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmila Mlynáriková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlynáriková, J., Boča, M., Gurišová, V. et al. Thermal analysis and volume properties of the systems (LiF–CaF2)eut.–LnF3 (Ln = Sm, Gd, and Nd) up to 1273 K. J Therm Anal Calorim 124, 973–987 (2016). https://doi.org/10.1007/s10973-015-5233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5233-5

Keywords

Navigation