Skip to main content
Log in

Thermodynamic modeling and experimental verification of eutectic point in the LiNO3–KNO3–Ca(NO3)2 ternary system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For closing the gaps of the eutectic composition and temperature of the system LiNO3–KNO3–Ca(NO3)2 reported by various literatures, we chose an asymmetric Toop model to simulate and predict the phase diagram of the titled system, followed by differential scanning calorimeter and thermogravimetry experiments. The eutectic composition and temperatures reported in literatures are evaluated based on the results determined in this work. It was found that the eutectic composition and temperature reported by Lehrman et al. (J Am Chem Soc 59(1):179–181, 1937) is more reliable than reported by other literatures. It is indicted that wider working temperature window (lower condensation point) in concentrated solar power plant can be obtained when the thermal medium of the titled system is prepared with the eutectic composition determined in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reddy RG. Molten salts: thermal energy storage and heat transfer media. J Phase Equilib Diffus. 2011;32(4):269–70.

    Article  CAS  Google Scholar 

  2. Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. A review on global solar energy policy. Renew Sust Energ Rev. 2011;15(4):2149–63.

    Article  Google Scholar 

  3. Pandey AK, Tyagi VV, Park SR, Tyagi SK. Comparative experimental study of solar cookers using exergy analysis. J Therm Anal Calorim. 2012;109(1):425–31.

    Article  CAS  Google Scholar 

  4. Wang T, Mantha D, Reddy RG. Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage. Sol Energy Mater Sol Cells. 2012;100:162–8.

    Article  CAS  Google Scholar 

  5. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.

    Article  CAS  Google Scholar 

  6. Singh OK, Panwar NL. Effects of thermal conductivity and geometry of materials on the temperature variation in packed bed solar air heater. J Therm Anal Calorim. 2013;111(1):839–47.

    Article  CAS  Google Scholar 

  7. Wei XL, Qeng Q, Ding J, Yang XX, Yang JP, Long B. Theoretical study on thermal stability of molten salt for solar thermal power. Appl Therm Eng. 2013;54(1):140–4.

    Article  CAS  Google Scholar 

  8. Chamoli S, Thakur NS. Exergetic performance evaluation of solar air heater having V-down perforated baffles on the absorber plate. J Therm Anal Calorim. 2014;117(2):909–23.

    Article  CAS  Google Scholar 

  9. Peng Q, Yang XX, Ding J, Wei XL, Yang JP. Design of new molten salt thermal energy storage materials for solar thermal power plant. Appl Energy. 2013;112:682–9.

    Article  CAS  Google Scholar 

  10. Zhao CY, Wu ZG. Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Sol Energy Mater Sol Cells. 2011;95:3341–6.

    Article  CAS  Google Scholar 

  11. Wu YT, Ren N, Wang T, Ma CF. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Sol Energy. 2011;85(9):1957–66.

    Article  CAS  Google Scholar 

  12. Peng Q, Ding J, Wei XL, Yang JP, Yang XX. The preparation and properties of multi-component molten salts. Appl Energy. 2010;87:2812–7.

    Article  CAS  Google Scholar 

  13. Gomez JC, Calvet N, Starace AK, Glatzmaier GC. Ca(NO3)2–NaNO3–KNO3 molten salt mixtures for direct thermal energy storage systems in parabolic trough plants. J Sol Energy Eng. 2013;135:0210161–8.

    Article  Google Scholar 

  14. Kearney D, Kelly B, Herrmann U, Cable R, Pacheco J, Mahoney R, Price H, Blake D, Nava P, Potrovitza N. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy. 2004;29(5–6):861–70.

    Article  CAS  Google Scholar 

  15. Bauer T, Laing D, Tamme R. Recent progress in alkali nitrate/nitrite developments for solar thermal power applications. In: Proceedings of molten salts chemistry and technology, MS9, Trondheim, 5–9 June, 2011.

  16. Raade JW, Padowitz D. Development of molten salt heat transfer fluid with low melting point and high thermal stability. J Sol Energy Eng. 2011;133:0310131–6.

    Article  Google Scholar 

  17. Fernandez AG, Ushak S, Galleguillos H, Perez FJ. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl Energy. 2014;119:131–40.

    Article  CAS  Google Scholar 

  18. Protsenko PI, Bergman AG. Ternary system of fused nitrates of calcium, potassium, and sodium. Russ J Inorg Chem. 1950;20:1365–75 (in Russian).

    CAS  Google Scholar 

  19. Lehrman A, Adler E, Freidus J, Neimand M. The liquidus curve and surface of the systems lithium and calcium nitrates and calcium, lithium and potassium nitrates. J Am Chem Soc. 1937;59(1):179–81.

    Article  CAS  Google Scholar 

  20. Janecke E. The quaternary system Na, K, Ca, Mg//NO3 and its subsystems. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie. 1942;48(9):453–67 (in German).

    CAS  Google Scholar 

  21. Protsenko PI, Belova ZI. Binary systems of calcium nitrate with the nitrates of the first and second group. Russ J Inorg Chem. 1957;2:2617–20 (in Russian).

    CAS  Google Scholar 

  22. Lin PP, Pelton AD, Bale CW. Computation of ternary molten salt phase diagrams. J Am Ceram Soc. 1979;62(7–8):414–22.

    Article  CAS  Google Scholar 

  23. Qiao ZY, Xing XL, Peng M. Thermodynamic criterion for judging the symmetry of ternary systems and criterion applications. J Phase Equilib Diffus. 1996;17(6):502–7.

    Article  CAS  Google Scholar 

  24. Mantha D, Wang T, Reddy RG. Thermodynamic modeling of eutectic point in the LiNO3–NaNO3–KNO3 ternary system. J Phase Equilib Diffus. 2012;33(2):110–4.

    Article  CAS  Google Scholar 

  25. Mantha D, Wang T, Reddy RG. Thermodynamic modeling of eutectic point in the LiNO3–NaNO3–KNO3–NaNO2 quaternary system. Sol Energy Mater Sol Cells. 2013;118:18–21.

    Article  CAS  Google Scholar 

  26. Wang T, Mantha D, Reddy RG. Thermodynamic properties of LiNO3–NaNO3–KNO3–2KNO3·Mg(NO3)2 system. Thermochim Acta. 2013;551:92–8.

    Article  CAS  Google Scholar 

  27. Peng Q, Yang X, Ding J, Wei XL, Yang JP. Thermodynamic performance of the NaNO3–NaCl–NaNO2 ternary system. J Therm Anal Calorim. 2014;115(2):1753–8.

    Article  CAS  Google Scholar 

  28. Toop GW. Predicting ternary activities using binary data. Trans AIME. 1965;233:850–5.

    CAS  Google Scholar 

  29. Ansara I, Bemard C, Kaufman L, Spencer P. A comparison of calculated phase equilibriums in selected ternary alloy systems using thermodynamic values derived from different models. Calphad. 1978;2(1):1–15.

    Article  CAS  Google Scholar 

  30. Hillert M. Empirical methods of predicting and representing thermodynamic properties. Calphad. 1980;4(1):1–12.

    Article  CAS  Google Scholar 

  31. Sangster J, Pelton AD. Thermodynamic calculation of phase diagrams of the 60 common-ion alkali halide ternary systems containing cations Li, Na, K, Rb, Cs and anions F, Cl, Br, I. J Phase Equilib. 1991;12(5):511–37.

    Article  CAS  Google Scholar 

  32. Sangster J, Pelton AD. Phase diagrams and thermodynamic properties of the 70 binary alkali halide system having common ions. J Phys Chem Ref Date. 1987;16(3):509–61.

    Article  CAS  Google Scholar 

  33. Dessureault Y, Sangster J, Pelton AD. Critical evaluation of thermodynamic data and phase diagrams of the hydroxide–halide, hydroxide–nitrate, nitrate–nitrate, nitrate–halide and hydroxide–hydroxide systems (AOH–AX, ANO3–AX, ANO3–BNO3, AOH–BOH) where A, B = Li, Na, K and X = Cl, F, NO3, OH. J Chem Phys. 1990;87(3):407–53 (in French).

    CAS  Google Scholar 

  34. IIyasov II, Dunaeva TI. Ternary system of potassium, cesium, and calcium nitrates. Russ J Inorg Chem. 1977;22(1):265–7.

    Google Scholar 

  35. http://www.crct.polymtl.ca/fact/. Accessed 10 May 2014.

  36. Lumsden J. Thermodynamics of molten salt mixtures. London: Academic Press; 1966. p. 183–255.

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by Qinghai Science & Technology Department of China under the Contract Number 2012-H-804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lai, M., Han, H. et al. Thermodynamic modeling and experimental verification of eutectic point in the LiNO3–KNO3–Ca(NO3)2 ternary system. J Therm Anal Calorim 119, 1259–1266 (2015). https://doi.org/10.1007/s10973-014-4218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4218-0

Keywords

Navigation