Skip to main content
Log in

Improved thermal stability and reduced sublimation rate of pentaerythritol tetranitrate through doping graphene oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Various graphene oxide (GO)–pentaerythritol tetranitrate (PETN) micro-composites were prepared in this study to investigate the influence of nanomaterials on the stability of PETN. Differential scanning calorimetry analysis showed that PETN microcrystals become more stable after doping with GO. Additionally, thermogravimetric analysis indicated that sublimation rates and vapor pressures of various GO–PETN micro-composites were significantly reduced compared to pure PETN microcrystals. Scanning electron microscopy images indicated that PETN microcrystals were at least partially covered with GO, which may explain the increased thermal stability and reduced sublimation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This work has been partly published in 42nd North American Thermal Analysis Society (NATAS) conference.

References

  1. Zhang X, Weeks BL. Improved stability and reduced sublimation rate of pentaerythritol tetranitrate through doping graphene. In: 42nd Annual Conference of NATAS. Santa Fe, New Mexico, September 15–17th, 2014.

  2. Bushuyev OS, Brown P, Maiti A, Gee RH, Peterson GR, Weeks BL, Hope-Weeks LJ. Ionic polymers as a new structural motif for high-energy-density materials. J Am Chem Soc. 2012;134:1422–5.

    Article  CAS  Google Scholar 

  3. Dlott DD. Thinking big (and small) about energetic materials. Mater Sci Technol. 2006;22:463–73.

    Article  CAS  Google Scholar 

  4. Rossi C, Zhang K, Estève D, Alphonse P, Tailhades P, Vahlas C. Nanoenergetic materials for MEMS: a review. J Microelectromech Syst. 2007;16:919–31.

    Article  CAS  Google Scholar 

  5. Zhang X, Hikal WM, Zhang Y, Bhattacharia SK, Li L, Panditrao S, Wang S, Weeks BL. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl Phys Lett. 2013;102:141905.

    Article  Google Scholar 

  6. McGrane SD, Grieco A, Ramos KJ, Hooks DE, Moore DS. Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation. J Appl Phys. 2009;105:073505.

    Article  Google Scholar 

  7. Qiu H, Stepanov V, Di Stasio AR, Chou T, Lee WY. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity. J Hazard Mater. 2011;185:489–93.

    Article  CAS  Google Scholar 

  8. Sivabalan R, Gore GM, Nair UR, Saikia A, Venugopalan S, Gandhe BR. Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity. J Hazard Mater. 2007;139:199–203.

    Article  CAS  Google Scholar 

  9. Yi J, Zhao F, Hong W, Xu S, Hu R, Chen Z, Zhang L. Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant. J Hazard Mater. 2010;176:257–61.

    Article  CAS  Google Scholar 

  10. Zhang X, Weeks BL. Preparation of sub-micron nitrocellulose particles for improved combustion behavior. J Hazard Mater. 2014;268:224–8.

    Article  CAS  Google Scholar 

  11. Chin A, Ellison DS, Poehlein SK, Ahn MK. Investigation of the decomposition mechanism and thermal stability of nitrocellulose/nitroglycerine based propellants by electron spin resonance. Propellants Explos Pyrotech. 2007;32:117–26.

    Article  CAS  Google Scholar 

  12. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  Google Scholar 

  13. Zhang X, Zhang G, Liao YC, Weeks BL, Zhang Z. Embossing of organic thin films using a surfactant assisted lift-off technique. J Colloid Interface Sci. 2012;387:175–9.

    Article  CAS  Google Scholar 

  14. Zhang G, Weeks BL, Zhang X. Crystal growth of organic energetic materials: pentaerythritol tetranitrate. Cent Eur J Eng. 2012;2:336–46.

    CAS  Google Scholar 

  15. Zhang X, Weeks BL. Tip induced crystallization lithography. J Am Chem Soc. 2014;136:1253–5.

    Article  CAS  Google Scholar 

  16. Ingale SV, Wagh PB, Sastry PU, Patra AK, Tewari R, Singh IK, Phapale SB, Wasnik RD, Rao AS, Gupta SC. Nanocrystalline pentaerythritoltetranitrate using sol–gel process. Def Sci J. 2011;61:534–9.

    Article  CAS  Google Scholar 

  17. Bhattacharia SK, Maiti A, Gee RH, Weeks BL. Sublimation properties of pentaerythritol tetranitrate single crystals doped with its homologs. Propellants Explos Pyrotech. 2012;37:563–8.

    Article  CAS  Google Scholar 

  18. Mridha S, Weeks BL. Effect of Zn doping on the sublimation rate of pentaerythritol tetranitrate using atomic force microscopy. Scanning. 2009;31:181–7.

    Article  CAS  Google Scholar 

  19. Pitchimani R, Zheng W, Simon SL, Hope-Weeks LJ, Burnham AK, Weeks BL. Thermodynamic analysis of pure and impurity doped pentaerythritol tetranitrate crystals grown at room temperature. J Therm Anal Calorim. 2007;89:475–8.

    Article  CAS  Google Scholar 

  20. Bhattacharia SK, Maiti A, Gee RH, Nunley J, Weeks BL. Effect of homolog doping on surface morphology and mass-loss rates from PETN crystals: studies using atomic force microscope and thermogravimetric analysis. Propellants Explos Pyrotech. 2014;39:24–9.

    Article  CAS  Google Scholar 

  21. Hikal WM, Bhattacharia SK, Weeks BL. Effect of porphyrin doping on thermodynamic parameters of pentaerythritol tetranitrate (PETN) single crystals. Propellants Explos Pyrotech. 2012;37:718–23.

    Article  CAS  Google Scholar 

  22. Foltz MF. Aging of pentaerythritol tetranitrate (PETN). In: Report LLNL-TR-415057. Livermore: Lawrence Livermore National Laboratory; 2009.

  23. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–24.

    Article  CAS  Google Scholar 

  24. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.

    Article  CAS  Google Scholar 

  25. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–45.

    Article  CAS  Google Scholar 

  26. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3:327–31.

    Article  CAS  Google Scholar 

  27. Wan Y, Tang L, Gong L, Yan D, Li Y, Wu L, Jiang J, Lai G. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon. 2014;69:467–80.

    Article  CAS  Google Scholar 

  28. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Chem Eng J. 2014;237:411–20.

    Article  CAS  Google Scholar 

  29. Li X, McKenna GB. Considering viscoelastic micromechanics for the reinforcement of graphene polymer nanocomposites. ACS Macro Lett. 2012;1:388–91.

    Article  CAS  Google Scholar 

  30. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Smeu M, Zahid F, Ji W, Guo H, Jaidann M, Abou-Rachid H. Reaction kinetics in differential thermal analysis. J Phys Chem C. 2011;115:10985–9.

    Article  CAS  Google Scholar 

  33. Langmuir I. The vapor pressure of metallic tungsten. Phys Rev. 1913;2:329–42.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support received from the Office of Naval Research (ONR) under Award Number N00014-11-1-0424 and the US Department of Homeland Security under Award Number 2008-ST-061-ED0001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Brandon L. Weeks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Weeks, B.L. Improved thermal stability and reduced sublimation rate of pentaerythritol tetranitrate through doping graphene oxide. J Therm Anal Calorim 122, 1061–1067 (2015). https://doi.org/10.1007/s10973-015-5005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5005-2

Keywords

Navigation