Skip to main content
Log in

Combining Flash DSC, DSC and broadband dielectric spectroscopy to determine fragility

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New experimental results focused on Flash DSC, DSC and broadband dielectric spectroscopy investigations are reported in this work. The fictive temperatures and fragility indexes are estimated from Flash DSC experiments and compared to values obtained from classical DSC. The consistency of the Tool–Narayanaswamy–Moynihan model and fragility concept is then investigated over a large range of cooling rates. Indeed, the Flash DSC allows exploring thermal properties of materials over a continuous and broad range of heating and cooling rates, complementary to rates usually available with DSC. The reliability of investigations is also demonstrated by comparing results obtained from two model amorphous polymeric systems: polystyrene and poly(ethylene terephthalate)-glycol. The temperature dependence of the cooling rate obtained by Flash DSC and DSC is also compared to the temperature dependence of the relaxation times obtained from broadband dielectric spectroscopy, experiment considered as the reference concerning the fragility measurements. The comparison of these two dependencies implies a better understanding about the origin of the temperature dependence of the cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamovsky S, Minakov A, Schick C. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 2003;403:55–63.

    Article  CAS  Google Scholar 

  2. Guigo N, Sbirrazzuoli N, Vyazovkin S. Atypical gelation in gelatin solutions probed by ultra-fast calorimetry. Soft Matter. 2012;8:7116–21.

    Article  CAS  Google Scholar 

  3. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, et al. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 2011;522:36–45.

    Article  CAS  Google Scholar 

  4. Van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Poel GV, Androsch R. Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Thermochim Acta. 2013;563:33–7.

    Article  Google Scholar 

  5. Androsch R, Schick C, Schmelzer JWP. Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. Eur Polym J. 2014;53:100–8.

    Article  CAS  Google Scholar 

  6. Schawe JEK. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim. 2014;116:1165–73.

    Article  CAS  Google Scholar 

  7. Schawe JEK. Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim Acta. 2015;603:128–34.

  8. Gao S, Simon SL. Measurement of the limiting fictive temperature over five decades of cooling and heating rates. Thermochim Acta. 2015;603:123–27.

  9. Shamim N, Koh YP, Simon SL, McKenna GB. Glass transition temperature of thin polycarbonate films measured by flash differential scanning calorimetry. J Polym Sci, Part B: Polym Phys. 2014;52:1462–8.

    Article  Google Scholar 

  10. Oldekop VW. Theoretische betrachtungen über die Zähigkeit von Gläsern. Glastech Ber. 1957;30:8–14.

    CAS  Google Scholar 

  11. Ngai KL. Relaxation and diffusion in complex systems. New York: Springer; 2011.

    Book  Google Scholar 

  12. Angell C. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids. 1991;131–133:13–31.

    Article  Google Scholar 

  13. Vogel H. The law of the relation between the viscosity of liquids and the temperature. Phys Z. 1921;22:645–6.

    CAS  Google Scholar 

  14. Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8:339–55.

    Article  CAS  Google Scholar 

  15. Tammann G, Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Für Anorg Allg Chem. 1926;156:245–57.

    Article  Google Scholar 

  16. Plazek DJ, Ngai KL. Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules. 1991;24:1222–4.

    Article  CAS  Google Scholar 

  17. Tool AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc. 1946;29:240–53.

    Article  CAS  Google Scholar 

  18. Moynihan CT, Easteal AJ, De Bolt MA, Tucker J. Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc. 1976;59:12–6.

    Article  CAS  Google Scholar 

  19. Narayanaswamy OS. A model of structural relaxation in glass. J Am Ceram Soc. 1971;54:491–8.

    Article  CAS  Google Scholar 

  20. Delpouve N, Vuillequez A, Saiter A, Youssef B, Saiter JM. Fragility and cooperativity concepts in hydrogen-bonded organic glasses. Phys B Condens Matter. 2012;407:3561–5.

    Article  CAS  Google Scholar 

  21. Bouthegourd E, Esposito A, Lourdin D, Saiter A, Saiter JM. Size of the cooperative rearranging regions vs. fragility in complex glassy systems: influence of the structure and the molecular interactions. Phys B Condens Matter. 2013;425:83–9.

    Article  CAS  Google Scholar 

  22. Sepúlveda A, Tylinski M, Guiseppi-Elie A, Richert R, Ediger MD. Role of fragility in the formation of highly stable organic glasses. Phys Rev Lett. 2014;113:045901.

  23. Scopigno T, Cangialosi D, Ruocco G. Universal relation between viscous flow and fast dynamics in glass-forming materials. Phys Rev B. 2010;81:100202.

  24. Cangialosi D, Alegría A, Colmenero J. On the temperature dependence of the nonexponentiality in glass-forming liquids. J Chem Phys. 2009;130:124902.

    Article  Google Scholar 

  25. Yin H, Napolitano S, Schönhals A. Molecular mobility and glass transition of thin films of poly (bisphenol a carbonate). Macromolecules. 2012;45:1652–62.

    Article  CAS  Google Scholar 

  26. Roland CM, Fragiadakis D, Coslovich D, Capaccioli S, Ngai KL. Correlation of nonexponentiality with dynamic heterogeneity from four-point dynamic susceptibility χ[sub 4](t) and its approximation χ[sub T](t). J Chem Phys. 2010;133:124507.

    Article  CAS  Google Scholar 

  27. Crétois R, Delbreilh L, Dargent E, Follain N, Lebrun L, Saiter JM. Dielectric relaxations in polyhydroxyalkanoates/organoclay nanocomposites. Eur Polym J. 2013;49:3434–44.

    Article  Google Scholar 

  28. Capaccioli S, Prevosto D, Lucchesi M, Amirkhani M, Rolla P. Relation between configurational entropy and relaxation dynamics of glass-forming systems under volume and temperature reduction. J Non-Cryst Solids. 2009;355:753–8.

    Article  CAS  Google Scholar 

  29. Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E. Structural dependence of the molecular mobility in the amorphous fractions of polylactide. Macromolecules. 2014;47:5186–97.

    Article  CAS  Google Scholar 

  30. Dhotel A, Chen Z, Sun J, Youssef B, Saiter J-M, Schönhals A, Tan L, Delbreilh L. From monomers to self-assembled monolayers: the evolution of molecular mobility with structural confinements. Soft Matter. 2015;11:719–31.

    Article  Google Scholar 

  31. Poel GV, Istrate D, Magon A, Mathot V. Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim. 2012;110:1533–46.

    Article  Google Scholar 

  32. Havriliak S, Negami S. A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci Part C Polym Symp. 2007;14:99–117.

    Article  Google Scholar 

  33. Kremer F, Schönhals A. Broadband dielectric spectroscopy. New York: Springer; 2003.

    Book  Google Scholar 

  34. Akabori K, Atarashi H, Ozawa M, Kondo T, Nagamura T, Tanaka K. Glass transition behavior of hyper-branched polystyrenes. Polymer. 2009;50:4868–75.

    Article  CAS  Google Scholar 

  35. Saiter JM, Grenet J, Dargent E, Saiter A, Delbreilh L. Glass transition temperature and value of the relaxation time at Tg in vitreous polymers. Macromol Symp. 2007;258:152–61.

    Article  CAS  Google Scholar 

  36. Couderc H, Delbreilh L, Saiter A, Grenet J, De Souza N, Saiter JM. Relaxation in poly-(ethylene terephthalate glycol)/montmorillonite nanocomposites studied by dielectric methods. J Non-Cryst Solids. 2007;353:4334–8.

    Article  CAS  Google Scholar 

  37. Saiter A, Couderc H, Grenet J. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J Therm Anal Calorim. 2007;88:483–8.

    Article  CAS  Google Scholar 

  38. McKenna GB, Simon SL. The glass transition: its measurement and underlying physics. Handbook of thermal analysis and calorimetry. New York: Elsevier; 2002. p. 49–109.

    Google Scholar 

  39. Hamonic F, Prevosto D, Dargent E, Saiter A. Contribution of chain alignment and crystallization in the evolution of cooperativity in drawn polymers. Polymer. 2014;55:2882–9.

    Article  CAS  Google Scholar 

  40. Couderc H, Saiter A, Grenet J, Saiter JM, Boiteux G, Nikaj E, et al. Relaxation map of PETg-montmorillonite composites: Nanofiller concentration influence on α and β relaxation processes. Polym Eng Sci. 2009;49:836–43.

  41. Hensel A, Schick C. Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. J Non-Cryst Solids. 1998;235–237:510–6.

    Article  Google Scholar 

  42. Morikawa J, Hashimoto T. Estimation of frequency from a temperature scanning rate in differential scanning calorimetry at the glass transition of polystyrene. Polymer. 2011;52:4129–35.

    Article  CAS  Google Scholar 

  43. Schawe JEK. Vitrification in a wide cooling rate range: the relations between cooling rate, relaxation time, transition width, and fragility. J Chem Phys. 2014;141:184905.

    Article  Google Scholar 

  44. Chua YZ, Schulz G, Shoifet E, Huth H, Zorn R, Scmelzer JWP, et al. Glass transition cooperativity from broad band heat capacity spectroscopy. Colloid Polym Sci. 2014;292:1893–904.

    Article  CAS  Google Scholar 

  45. Saiter A, Devallencourt C, Saiter JM, Grenet J. Thermodynamically, “strong” and kinetically “fragile” polymeric glass exemplified by melamine formaldehyde resins. Eur Polym J. 2001;37:1083–90.

    Article  CAS  Google Scholar 

  46. Saiter A, Hess M, D’Souza N, Saiter J. Entropy and fragility in vitreous polymers. Polymer. 2002;43:7497–504.

    Article  CAS  Google Scholar 

  47. Delbreilh L, Negahban M, Benzohra M, Lacabanne C, Saiter JM. Glass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry. J Therm Anal Calorim. 2009;96:865–71.

    Article  CAS  Google Scholar 

  48. Arabeche K, Delbreilh L, Saiter J-M, Michler GH, Adhikari R, Baer E. Fragility and molecular mobility in micro- and nano-layered PC/PMMA films. Polymer. 2014;55:1546–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the GRR Matériaux (Upper Normandy Region, France) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allisson Saiter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhotel, A., Rijal, B., Delbreilh, L. et al. Combining Flash DSC, DSC and broadband dielectric spectroscopy to determine fragility. J Therm Anal Calorim 121, 453–461 (2015). https://doi.org/10.1007/s10973-015-4650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4650-9

Keywords

Navigation