Skip to main content
Log in

Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Measurements have been performed on poly(ethylene terephthalate)glycol/montmorillonite nanocomposites with different filler contents using differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TMDSC). According to the strong-fragile concept proposed by Angell, we have determined the values of the fragility index m. In a second time, we have calculated the average size of a cooperative rearranging region (CRR) z(T g) at the glass transition according to the definition proposed by Solunov. However, z(T g is a dimensionless quantity and then only allows a comparative study between different samples. To calculate the average number of monomer units by CRR noted N α, we have used the method developed by Donth. The results show that the presence of montmorillonite in PETg matrice implies modifications on structural relaxation phenomena. Furthermore, we have shown that z(T g and N α values have the same evolution in function of filler content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LCE Struik et al. (1978) Physical aging in amorphous polymers and others materials Elsevier Amsterdam

    Google Scholar 

  2. CA Angell et al. (1984) Relaxation in complex systems Naval Research Laboratory Washington D.C. 3

    Google Scholar 

  3. KL Ngai RW Rendell LD Pye WC Lacourse HJ Stevens et al. (1992) The Physics of Non-Crystalline Solids Taylor and Francis London 309

    Google Scholar 

  4. AQ Tool C Eichlin (1931) J. Am. Ceram. Soc. 29 276 Occurrence Handle10.1111/j.1151-2916.1931.tb16602.x

    Article  Google Scholar 

  5. OS Narayanaswami (1971) J. Am. Ceram. Soc. 54 491 Occurrence Handle10.1111/j.1151-2916.1971.tb12186.x

    Article  Google Scholar 

  6. CT Moynihan AJ Easteal MA Debolt J Tucker (1976) J. Am. Ceram. Soc. 59 12 Occurrence Handle10.1111/j.1151-2916.1976.tb09376.x Occurrence Handle1:CAS:528:DyaE28XhsFCmsrg%3D

    Article  CAS  Google Scholar 

  7. AQ Tool (1946) J. Am. Ceram. Soc. 29 240 Occurrence Handle10.1111/j.1151-2916.1946.tb11592.x Occurrence Handle1:CAS:528:DyaH28XjsFShsw%3D%3D

    Article  CAS  Google Scholar 

  8. G Bartenev (1951) Dokl. Akad. Nauk SSSR 76 227 Occurrence Handle1:CAS:528:DyaG3MXktVKrsg%3D%3D

    CAS  Google Scholar 

  9. HN Ritland (1954) J. Am. Ceram. Soc. 37 370 Occurrence Handle10.1111/j.1151-2916.1954.tb14053.x Occurrence Handle1:CAS:528:DyaG2MXitFKqtg%3D%3D

    Article  CAS  Google Scholar 

  10. HP Diogo SS Pinto JJ Moura Ramos (2006) J. Therm. Anal. Cal. 83 361 Occurrence Handle10.1007/s10973-005-7275-6 Occurrence Handle1:CAS:528:DC%2BD28Xitlaks74%3D

    Article  CAS  Google Scholar 

  11. CM Roland R Casalini (2006) J. Therm. Anal. Cal. 83 87 Occurrence Handle10.1007/s10973-005-7221-7 Occurrence Handle1:CAS:528:DC%2BD28XitF2nsbc%3D

    Article  CAS  Google Scholar 

  12. SH Glarum (1960) J. Chem. Phys. 33 639 Occurrence Handle10.1063/1.1731229 Occurrence Handle1:CAS:528:DyaF3MXisFymuw%3D%3D Occurrence Handle127335

    Article  CAS  MathSciNet  Google Scholar 

  13. G Adam JH Gibbs (1965) J. Chem. Phys. 43 139 Occurrence Handle10.1063/1.1696442 Occurrence Handle1:CAS:528:DyaF2MXkt1Oqsbc%3D

    Article  CAS  Google Scholar 

  14. CA Solunov (1999) Eur. Polym. J. 35 1543 Occurrence Handle10.1016/S0014-3057(98)00226-2 Occurrence Handle1:CAS:528:DyaK1MXks1Krsr4%3D

    Article  CAS  Google Scholar 

  15. M Alexandre P Dubois (2000) Mater. Sci. Eng. 28 1 Occurrence Handle10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  16. Y Kojima A Usuki M Kawasumi Y Fkushima A Okada T Kurauchi O Kamigaito (1993) J. Mater. Res. 8 1185 Occurrence Handle1993JMatR...8.1185K Occurrence Handle1:CAS:528:DyaK3sXisFGqsb0%3D

    ADS  CAS  Google Scholar 

  17. http://www.nanoclay.com

  18. D Kubies J Scudla R Puffr A Sikora J Baldrian J Kovárová M Slouf F Rypásek (2006) Eur. Polym. J. 42 888 Occurrence Handle10.1016/j.eurpolymj.2005.10.007 Occurrence Handle1:CAS:528:DC%2BD28XitleitLo%3D

    Article  CAS  Google Scholar 

  19. A Gu G Liang (2003) Polym. Degrad. Stab. 80 383 Occurrence Handle10.1016/S0141-3910(03)00026-0 Occurrence Handle1:CAS:528:DC%2BD3sXitFGrtb8%3D

    Article  CAS  Google Scholar 

  20. J Xiong Y Liu X Yang X Wang (2004) Polym. Degrad. Stab. 86 549 Occurrence Handle10.1016/j.polymdegradstab.2004.07.001 Occurrence Handle1:CAS:528:DC%2BD2cXosFSktL0%3D

    Article  CAS  Google Scholar 

  21. E Dargent E Bureau L Delbreilh A Zumailan JM Saiter (2005) Polymer 46 3090 Occurrence Handle10.1016/j.polymer.2005.01.096 Occurrence Handle1:CAS:528:DC%2BD2MXjtlKhtLg%3D

    Article  CAS  Google Scholar 

  22. S. Caillère and S. Hénin, Minéralogie des argiles, Masson et Cie 1963.

  23. A Saiter JM Saiter J Grenet (2006) Eur. Polym. J. 42 213 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCntL%2FO

    CAS  Google Scholar 

  24. E Donth et al. (1981) Glasübergang Akademie Berlin

    Google Scholar 

  25. E Donth (1996) J. Polym. Sci. B 34 2881 Occurrence Handle10.1002/(SICI)1099-0488(199612)34:17<2881::AID-POLB3>3.0.CO;2-U Occurrence Handle1:CAS:528:DyaK28Xnt12kt78%3D

    Article  CAS  Google Scholar 

  26. E Donth (1999) Acta Polym. 50 240 Occurrence Handle10.1002/(SICI)1521-4044(19990701)50:7<240::AID-APOL240>3.0.CO;2-H Occurrence Handle1:CAS:528:DyaK1MXks1Gktr8%3D

    Article  CAS  Google Scholar 

  27. E Donth J Korus E Hempel M Beiner (1997) Thermochim. Acta 304–305 239 Occurrence Handle10.1016/S0040-6031(97)00027-0

    Article  Google Scholar 

  28. E Hempel G Hempel A Hensel C Schick E Donth (2000) J. Phys. Chem. B 104 2460 Occurrence Handle10.1021/jp991153f Occurrence Handle1:CAS:528:DC%2BD3cXht12gtbw%3D

    Article  CAS  Google Scholar 

  29. E Donth et al. (2001) The Glass Transition, Relaxation Dynamics in Liquids and Disordered Materials Springer Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allisson Saiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiter, A., Couderc, H. & Grenet, J. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J Therm Anal Calorim 88, 483–488 (2007). https://doi.org/10.1007/s10973-006-8117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8117-x

Keywords

Navigation