Skip to main content

The Rate of Crystallization of Linear Polymers with Chain Folding

  • Chapter
Treatise on Solid State Chemistry

Abstract

Under a variety of circumstances commonly encountered in practice linear macromolecules crystallize into the form of thin platelets whose large upper and lower surfaces consist of an array of molecular folds. We refer to these as “chain-folded crystals” or “chain-folded lamellae,” the latter term usually being reserved for folded structures in polymers crystallized from the melt. The theory of the rate of formation of these platelets will be outlined, and the prediction and origin of the thin dimension given. The thin dimension of the crystal platelets is determined by kinetic factors, and the elucidation of the kinetics of growth is therefore of importance in polymer morphology on both a molecular and a macroscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. H. Geil, Polymer Single Crystals, Interscience Publishers, New York (1963).

    Google Scholar 

  2. F. Khoury and E. Passaglia, This Treatise, Vol. 3, Chapter 6.

    Google Scholar 

  3. P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, New York (1969).

    Google Scholar 

  4. H. D. Keith and F. J. Padden, Jr., A phenomenological theory of spherulitic crystallization, J. Appl. Phys. 34, 2409–2421 (1963).

    CAS  Google Scholar 

  5. F. E. Karasz, H. E. Bair, and J. M. O’Rielly, Thermal properties of atactic and isotactic polystyrene, J. Phys. Chem. 69, 2657–2667 (1965).

    CAS  Google Scholar 

  6. J. Boon, The effect of extreme supercooling on the number of spherulitic centers in isotactic polystyrene, J. Polymer Sci. C 16, 1739–1749 (1967).

    Google Scholar 

  7. T. Suzuki and A. J. Kovacs, Temperature dependence of spherulitic growth rate of isotactic polystyrene, Polymer J. 1, 82–100 (1970).

    CAS  Google Scholar 

  8. J. N. Hay, Crystallization kinetics of high polymers: Isotactic polystyrene, J. Polymer Sci. A 3, 433–447 (1965).

    CAS  Google Scholar 

  9. L. H. Bolz and R. K. Eby, Inclusion of perfluoromethyl groups in the crystals of copolymers of tetrafluoroethylene and hexafluoropropylene, J. Res. Nat. Bur. Std. (U.S.) 69A, 481–486 (1965).

    Google Scholar 

  10. C. W. Bunn, The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the CH2 group, Trans. Faraday Soc. 35, 482–491 (1939).

    CAS  Google Scholar 

  11. J. J. Point, Enroulement hélicoïdal dans les sphérolithes de polyéthylène. Bull. Acad. Roy. Belg. 41, 982–990 (1955);

    CAS  Google Scholar 

  12. J. J. Point and G. A. Homès, Fibre N du polyéthylène, Compt. Rend. 242, 2557–2560 (1956).

    CAS  Google Scholar 

  13. R. Jaccodine, Observations of spiral growth steps in ethylene polymers, Nature 176, 305–306 (1955).

    CAS  Google Scholar 

  14. H. D. Keith, F. J. Padden, Jr., and R. G. Vadimsky, Intercrystalline links: Critical evaluation, J. Appl. Phys. 42, 4585–4592 (1971).

    CAS  Google Scholar 

  15. K. H. Storks, An electron diffraction examination of some linear high polymers, J. Am. Chem. Soc. 60, 1753–1761 (1938).

    CAS  Google Scholar 

  16. J. D. Hoffman and J. I. Lauritzen, Jr., Crystallization of bulk polymers with chain folding: Theory of growth of lamellar spherulites, J. Res. Nat. Bur. Std. (U.S.) 65A, 297–336 (1961).

    Google Scholar 

  17. J. D. Hoffman, Theoretical aspects of polymer crystallization with chain folds: Bulk polymers, Soc. Plastics Eng. Trans. 4, 315–362 (1964).

    CAS  Google Scholar 

  18. A. Keller, A note on single crystals in polymers: Evidence for a folded chain configuration, Phil. Mag. 2, 1171–1175 (1957).

    CAS  Google Scholar 

  19. E. W. Fischer, Stufen-and spiralförmiges Kristallwachsturo bei Hochpolymeren, Z. Naturforsch. 12a, 753–754 (1957).

    Google Scholar 

  20. P. H. Till, Jr., The growth of single crystals of linear polyethylene, J. Polymer Sci. 24, 301–306 (1957).

    CAS  Google Scholar 

  21. W. D. Niegisch and P. R. Swan, Hollow pyramidal crystals of polyethylene and a mechanism of growth, J. Appl. Phys. 31, 1906–1910 (1960).

    CAS  Google Scholar 

  22. P. H. Lindenmeyer, Crystallization in polymers, J. Polymer Sci. C 1, 5–39 (1963).

    Google Scholar 

  23. D. C. Bassett, F. C. Frank, and A. Keller, Some new habit features in crystals of long chain compounds. Part IV. The fold surface geometry of monolayer polyethylene crystals and its relevance to fold packing and crystal growth, Phil. Mag. 8, 1753–1787 (1963).

    CAS  Google Scholar 

  24. M. I. Bank and S. Krimm, Mixed crystal infrared study of chain folding in crystalline polyethylene, J. Polymer Sci. A-27, 1785–1809 (1969).

    Google Scholar 

  25. G. M. Martin and E. Passaglia, Density of polyethylene crystals grown from solution, J. Res. Nat. Bur. Std. (U.S.) 70A, 221–224 (1966).

    CAS  Google Scholar 

  26. A. Peterlin, The amount and location of amorphous component in polyethylene single crystals, J. Macrgmol. Sci.-Phys. B3, 19–31 (1969).

    CAS  Google Scholar 

  27. E. W. Fischer, H. Goddar, and G. F. Schmidt, A remark on the surface structure of polyethylene single crystals, J. Polymer Sci. B 5, 619–624 (1969).

    Google Scholar 

  28. A. Keller, E. Martuscelli, D. J. Priest, and Y. Udagawa, Fold surface of polyethylene single crystals as assessed by selective degradation studies. III. Application of the improved techniques to single crystals, J. Polymer Sci. A-29, 1807–1837 (1971).

    Google Scholar 

  29. J. I. Lauritzen, Jr. and J. D. Hoffman, Extension of theory of growth of chain-folded polymer crystals to large undercoolings, J. Appl. Phys. 44, 4340–4352 (1973).

    CAS  Google Scholar 

  30. A. Silberberg, Adsorption of flexible macromolecules. III. Generalized treatment of the isolated macromolecule; the effect of self-exclusion, J. Chem. Phys. 46, 1105–1114 (1967).

    CAS  Google Scholar 

  31. C. A. J. Hoeve, E. A. DiMarzio, and P. Peyser, Adsorption of polymer molecules at low surface coverage, J. Chem. Phys. 42, 2558–2563 (1965).

    CAS  Google Scholar 

  32. E. A. DiMarzio and F. L. McCrackin, One-dimensional model of polymer adsorption, J. Chem. Phys. 43, 539–547 (1965).

    CAS  Google Scholar 

  33. E. A. DiMarzio and R. J. Rubin, Adsorption of a chain polymer between two plates, J. Chem. Phys. 55, 4318–4336 (1971).

    CAS  Google Scholar 

  34. R. R. Stromberg, D. J. Tutas, and E. Passaglia, Conformation of polystyrene adsorbed at the theta-temperature, J. Phys. Chem. 69, 3955–3963 (1965).

    CAS  Google Scholar 

  35. W. H. Grant and R. R. Stromberg, Rates of adsorption and desorption of polystyrene, ACS Polymer Preprints 11 (September), 1397–1399 (1970).

    Google Scholar 

  36. P. H. Geil, Nylon single crystals, J. Polymer Sci. 44, 449–458 (1960).

    CAS  Google Scholar 

  37. P. H. Geil, Jr., N. K. Symons, and R. G. Scott, Solution grown crystals of an acetal resin, J. Appl. Phys. 30, 1516–1517 (1959).

    CAS  Google Scholar 

  38. B. G. Ranby, F. F. Morehead, and N. M. Walter, Morphology of n-alkanes, linear polyethylene, and isotactic polypropylene crystallized from solution, J. Polymer Sci. 44, 349–367 (1960).

    CAS  Google Scholar 

  39. F. Khoury, The spherulitic crystallization of isotactic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors, J. Res. Nat. Bur. Std. (U.S.) 70A, 29–61 (1966).

    CAS  Google Scholar 

  40. F. C. Frank, A. Keller, and A. O’Connor, Observations on single crystals of an isotactic polyolefin: Morphology and chain packing in poly-4-methylpentene-1, Phil. Mag. 4, 200–214(1959).

    CAS  Google Scholar 

  41. V. F. Holland, S. B. Mitchell, W. L. Hunter, and P. H. Lindenmeyer, Crystal structure and morphology of polyacrylonitrite in dilute solution, J. Polymer Sci. 62, 145–151 (1962).

    CAS  Google Scholar 

  42. W. Kern, J. Davidovits, K. J. Rauterkus, and G. F. Schmidt, Röntgenographische Untersuchungen an linearen Oligurethanen, Makrocool. Chem. 43, 106–116 (1961).

    CAS  Google Scholar 

  43. : R. St. J. Manley, Growth and morphology of single crystals of cellulose triacetate, J. Polymer Sci. A1, 1875–1892 (1963).

    Google Scholar 

  44. H. D. Keith, R. G. Vadimsky, and F. J. Padden, Jr., Crystallization of isotactic polystyrene from solution, J. Polymer Sci. A-28, 1687–1696 (1970).

    Google Scholar 

  45. V. F. Holland and R. L. Miller, Isotactic polybutene-1 single crystals: Morphology, J. Appl. Phys. 35, 3241–3248 (1964).

    CAS  Google Scholar 

  46. J. D. Barnes and F. A. Khoury, Formation of curved polymer crystals: Polychlorotrifluoroethylene, J. Res. Nat. Bur. Std. (U.S.), 78A, 363–373 (1974).

    CAS  Google Scholar 

  47. H. Bittiger and R. H. Marchessault, Formation of ribbonlike fibrils by crystallisation from dilute solution, Bull. Am. Phys. Soc. 15, 305 (1970).

    Google Scholar 

  48. F. J. Padden, Jr., H. D. Keith, and G. Giannoni, Single crystals of poly-Llysine, Biopolymers 7, 793–804 (1969).

    CAS  Google Scholar 

  49. H. D. Keith, G. Giannoni, and F. J. Padden, Jr., Single crystals of poly(L-glutamic acid), Biopolymers 7, 775–792 (1969).

    CAS  Google Scholar 

  50. R. G. Crystal, The polymeric nature of selenium crystallization. I. Morphology and thermodynamic considerations, J. Polymer Sci. A-2 8, 1755–1772 (1970).

    CAS  Google Scholar 

  51. Y. Yaniashita, Single crystals of poly(ethylene terephthalate), J. Polymer Sci. A 3, 81–92 (1965).

    Google Scholar 

  52. F. J. Balta Calleja and A. Keller, On the relation between long spacings, molecular length, and orientation in long chain compounds with reference to the possibility of chain folding. Part II. Poly(ethylene oxide)s, J. Polymer Sci. A2, 2171–2179 (1964).

    Google Scholar 

  53. F. J. Padden, Jr. and H. D. Keith, Crystalline morphology of synthetic polypeptides, J. Appl. Phys. 36, 2987–2995 (1965).

    CAS  Google Scholar 

  54. S. H. Carr, A. G. Walton, and E. Baer, Epitaxial crystallization of poly(ybenzyl L-glutamate) on alkali halide single crystals, Biopolymers 6, 469–477 (1968).

    CAS  Google Scholar 

  55. G. Giannoni, F. J. Padden, Jr., and H. D. Keith, Crystallization of DNA from dilute solution, Proc. Nat. Acad. Sci. (U.S.) 62, 964–971 (1969).

    CAS  Google Scholar 

  56. A. K. Kleinschmidt, D. Lang, D. Jackerts, and R. Zahn, Darstellung and Langenmessungen des Gesamten Desoxyribonucleinsaure-Inhaltes von T -Bakteriophagen, Biochim. Biophys. Acta 61, 857–864 (1962).

    CAS  Google Scholar 

  57. A. C. T. North and A. Rich, X-ray diffraction studies of bacterial viruses, Nature 191, 1242–1245 (1961).

    CAS  Google Scholar 

  58. A. Keller and Y. Udagawa, Crystallization of short aliphatic polymer chains. I. General chain-folding behavior, J. Polymer Sci. A-2 10, 221–238 (1972).

    CAS  Google Scholar 

  59. L. D’Ilario, A. Keller, and E. Martuscelli, Crystallization of short aliphatic chains. II. Example of even fold surface with adjacent fold reentry and of a transition to chain extension, J. Polymer Sci. A-2 10, 239–252 (1972).

    Google Scholar 

  60. H. Zahn, Röntgenstruktur von Linearen Oligomeren, IUPAC Symp. on Macromolecules, paper IB 8, Wiesbaden (1959).

    Google Scholar 

  61. J. P. Arlie, P. Spegt, and A. Skoulios, Etude de la cristallisation des polymères II. Structure lamellaire et repliement des chaînes du polyoxyéthylène, Makromol. Chem. 104, 212–229 (1967).

    CAS  Google Scholar 

  62. W. D. Niegisch, Crystallography of poly-p-xylylene, J. Appl. Phys. 37, 4041–4046 (1966).

    CAS  Google Scholar 

  63. A. J. Bur and D. E. Roberts, Rodlike and random-coil behavior of poly(n-butyl isocyanate) in dilute solution, J. Chem. Phys. 51, 406–420 (1969).

    CAS  Google Scholar 

  64. G. K. Noren and J. K. Stille, Polyphenylenes, Macromolecular Rev. 5, 385–430 (1971). (Also known as J. Polymer Sci., Part D.)

    CAS  Google Scholar 

  65. N. Yoda and M. Kurihara, New polymers of aromatic heterocycles by polyphosphoric acid solution methods, Macromolecular Rev. 5, 109–193 (1971) (also known as J. Polymer Sci,Part D).

    CAS  Google Scholar 

  66. W. Traub and K. A. Piez, in Advances in Protein Chemistry (C. B. Anfinsen, Jr., J. T. Edsall, and F. M. Richards, eds.), Academic Press, New York (1971), p. 305.

    Google Scholar 

  67. J. I. Lauritzen, Jr. and J. D. Hoffman, Theory of formation of polymer crystals with folded chains in dilute solution, J. Res. Nat. Bur. Std. (U.S.) 64A, 73–102 (1960).

    Google Scholar 

  68. F. P. Price, The growth habit of single polymer crystals, J. Polymer Sci. 42, 49–56 (1960).

    CAS  Google Scholar 

  69. A. Keller and A. O’Connor, Study of single crystals and their associations in polymers, Disc. Faraday Soc. 25, 114–121 (1958).

    Google Scholar 

  70. C. W. Bunn and T. C. Alcock, The texture of polythene, Trans. Faraday Soc. 41, 317–325 (1945).

    CAS  Google Scholar 

  71. H. D. Keith and F. J. Padden, Jr., The optical behavior of spherulites in crystalline polymers. Part. I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation, J. Polymer Sci. 39, 101–122 (1959).

    CAS  Google Scholar 

  72. H. D. Keith and F. J. Padden, Jr., The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of spherulites, J. Polymer Sc.i. 39, 123–138 (1959).

    CAS  Google Scholar 

  73. F. P. Price, On extinction patterns of polymer spherulites, J. Polymer Sci. 39, 139–150 (1959).

    CAS  Google Scholar 

  74. A. Keller, Investigations of banded spherulites, J. Polymer Sci. 39, 151–173 (1959);

    CAS  Google Scholar 

  75. A. Keller, Morphology of crystalline polymers, a review, in Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts, and D. Turnbull, eds.), pp. 499–532, Wiley, New York (1958).

    Google Scholar 

  76. H. D. Keith and F. J. Padden, Jr., Spherulitic crystallization from the melt. I. Fractionation and impurity segregation and their influence on crystalline morphology, J. Appl. Phys. 35, 1270–1285 (1964).

    CAS  Google Scholar 

  77. H. D. Keith and F. J. Padden, Jr., Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on kinetics of crystallization, J. Appl. Phys. 35, 1286–1296 (1964).

    CAS  Google Scholar 

  78. M. Herbst., Röntgenographische Untersuchung an Sphärolithen in PolyamidSpritzgussmassen, Z. Electrochemie 54, 318–320 (1950).

    CAS  Google Scholar 

  79. A. Keller, The spherulitic structure of crystalline polymers, Part II. The problem of molecular orientation in polymer spherulites, J. Polymer Sci. 17, 351–364 (1955).

    CAS  Google Scholar 

  80. R. P. Palmer and A. J. Cobbold, The texture of melt crystallized polythene as revealed by selective oxidation, Makromol. Chem. 74, 174–189 (1964).

    CAS  Google Scholar 

  81. A. Keller and S. Sawada, On the interior morphology of bulk polyethylene, Makromol. Chem. 74, 190–221 (1964).

    CAS  Google Scholar 

  82. C. W. Hock, Selective oxidation with nitric acid reveals the microstructure of polypropylene, J. Polymer Sci. B 3, 573–576 (1965).

    CAS  Google Scholar 

  83. J. D. Hoffman and J. J. Weeks, Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene, J. Chem. Phys. 37, 1723–1741 (1962).

    CAS  Google Scholar 

  84. E. Passaglia and H. K. Kevorkian, Specific heat of atactic and isotactic polypropylene and the entropy of the glass, J. Appl. Phys. 34, 90–97 (1963).

    CAS  Google Scholar 

  85. F. Rybnikar, Mechanism of secondary crystallization in polymers, J. Polymer Sci. A 1, 2031–2038 (1963); A. J. Kovacs, Cinétique de Cristallisation du Polyéthylène, Ric. Sci. 25A, 668–685 (1955) (IUPAC Symp. on Macromolecular Chemistry, Milan, 1954 ).

    Google Scholar 

  86. W. L. Holt and A. T. McPherson, Change of volume of rubber on stretching: Effects of time, elongation, and temperature, J. Res. Nat. Bur. Std. U.S.A. 117, 659–678 (1936).

    Google Scholar 

  87. E. Passaglia and G. M. Martin, Dependence of mechanical relaxation on morphology in isotactic polypropylene, J. Res. Nat. Bur. Std. (U.S.) 68A, 519–527 (1964).

    Google Scholar 

  88. J. D. Hoffman, G. Williams, and E. Passaglia, Analysis of the a, ß, and y relaxations in polychlorotrifluoroethylene and polyethylene: Dielectric and mechanical properties, J. Polymer Sci. C 14, 173–235 (1966).

    Google Scholar 

  89. E. Ergoz, J. G. Fatou, and L. Mandelkern, Molecular weight dependence of the crystallization kinetics of linear polyethylene. I. Experimental results, Macromolecules 5, 147–157 (1972).

    CAS  Google Scholar 

  90. J. D. Hoffman and W. Elban, to be published.

    Google Scholar 

  91. R. K. Sharma and L. Mandelkern, The density of polyethylene crystallized in the bulk and from dilute solution, Macromolecules 2, 266–271 (1969).

    CAS  Google Scholar 

  92. L. Mandelkern, A. L. Allou, Jr., and M. Gopalan, The enthalpy of fusion of linear polyethylene, J. Phys. Chem. 72, 309–318 (1968).

    CAS  Google Scholar 

  93. D. Turnbull, Kinetics of heterogeneous nucleation, J. Chem. Phys. 18, 198–203 (1950).

    CAS  Google Scholar 

  94. B. Vonnegut, Variation with temperature of the nucleation rate of supercooled liquid tin and water drops, J. Colloid Sci. 3, 563–569 (1948).

    CAS  Google Scholar 

  95. D. Turnbull and R. L. Cormia, Kinetics of crystal nucleation in some normal alkane liquids, J. Chem. phys. 34, 820–831 (1961).

    CAS  Google Scholar 

  96. A. J. Pennings, Hydrodynamically induced crystallization of polymers from solutions, in Crystal Growth (Proc. Int. Conf. on Crystal Growth, Boston, 1966; H. S. Peiser, ed.), Pergamon Press, New York (1967), pp. 389–393.

    Google Scholar 

  97. H. D. Keith, F. J. Padden, Jr., and R. G. Vadimsky, Further studies of intercrystalline links in polyethylene, J. Appl. Phys. 37, 4027–4034 (1966).

    CAS  Google Scholar 

  98. A. Keller and M. S. Machin, Oriented crystallization in polymers, J. Macromal. Sci. (Phys.) Bl, 41–91 (1967).

    Google Scholar 

  99. E. H. Andrews, Crystalline morphology in thin films of natural rubber. II. Crystallization under strain, Proc. Roy. Soc. (London) A277, 562–570 (1964).

    CAS  Google Scholar 

  100. E. H. Andrews, P. J. Owen, and A. Singh, Microkinetics of lamellar crystallization in a long chain polymer, Rubber Chem. Tech. 45, 1315–1333 (1972); Proc. Roy. Soc. A324, 79–97 (1971).

    CAS  Google Scholar 

  101. P. H. Geil, F. R. Anderson, B. Wunderlich, and T. Arakawa, Morphology of polyethylene crystallized from the melt under pressure, J. Polymer Sci. A 2, 3707–3720 (1964).

    CAS  Google Scholar 

  102. D. V. Rees and D. C. Bassett, Crystallization of polyethylene at elevated pressures, J. Polymer Sci. A-2 9, 385–406 (1971).

    CAS  Google Scholar 

  103. P. D. Calvert and D. R. Uhlmann, Crystallization of polyethylene at high pressure: A kinetic view, J. Polymer Sci. A-2 10, 1811–1836 (1972).

    CAS  Google Scholar 

  104. D. C. Bassett and B. Turner, New high-pressure phase in chain-extended crystallization of polythene, Nature (Phys. Sci.) 240, 146–148 (1972).

    CAS  Google Scholar 

  105. B. Wunderlich, L. Melillo, C. M. Cormia, T. Davidson, and G. Snyder, Surface melting and crystallization of polyethylene, J. Macromol. Sci.-Phys. Bl, 485–516 (1967).

    Google Scholar 

  106. T. W. Huseby and H. E. Bair, Dissolution of polyethylene single crystals in xylene and octadecane, J. Appl. Phys. 39, 4969–4973 (1968).

    CAS  Google Scholar 

  107. H. E. Bair, T. W. Huseby, and R. Salovey, The equilibrium melting temperature and surface free energy of polyethylene single crystals, ACS Polymer Preprints 9, 795–805 (1968).

    Google Scholar 

  108. A. Nakajima, F. Hamada, S. Hayashi, and T. Sumida, Effect of solvent on single crystal formation from dilute polyethylene solution. I. Surface free energy of single crystals estimated from kinetic theory, Kolloid-Z. u. Z. Polymere 222, 10–16 (1968).

    CAS  Google Scholar 

  109. A. Nakajima, S. Hayashi, T. Korenaga, and T. Sumida, Effect of solvent on single crystal formation from dilute polyethylene solution. II. Surface free energy of single crystals estimated from dissolution temperatures, and density of those crystals, Kolloid-Z. u. Z. Polymere 222, 124–130 (1968).

    CAS  Google Scholar 

  110. H. E. Bair and R. Salovey, The Effect of molecular weight on the structure and thermal properties of polyethylene, J. Macromol. Sci.-Phys. B3, 3–18 (1969).

    CAS  Google Scholar 

  111. R. G. Brown and R. K. Eby, Effect of crystallization conditions and heat treatment on polyethylene: Lamellar thickness, melting temperature and density, J. Appl. Phys. 35, 1156–1161 (1964).

    CAS  Google Scholar 

  112. J. D. Hoffman, J. I. Lauritzen, Jr., E. Passaglia, G. S. Ross, L. J. Frolen, and J. J. Weeks, Kinetics of polymer crystallization from solution and the melt, Kolloid-Z. u. Z. Polymere 231, 564–592 (1969).

    CAS  Google Scholar 

  113. J. D. Hoffman and J. J. Weeks, X-ray study of isothermal thickening of lamellae in bulk polyethylene at the crystallization temperature, J. Chem. Phys. 42, 4301–4302 (1965).

    CAS  Google Scholar 

  114. J. J. Weeks, Melting temperature and change of lamellar thickness with time for bulk polyethylene, J. Res. Nat. Bur. Std. (U.S.) 67A, 441–451 (1963).

    CAS  Google Scholar 

  115. A. Peterlin, Thickening of polymer single crystals during annealing, J. Polymer Sci. B 1, 279–284 (1963); A. Peterlin, Molecular weight dependence of isothermal long period growth of polyethylene single crystals, Polymer 6, 25–34 (1965).

    CAS  Google Scholar 

  116. L. A. Wood and N. Bekkedahl, Crystallization of unvulcanized rubber at different temperatures, J. Res. Nat. Bur. Std. (U.S.) 36, 489–510 (1946); J. Appl. Phys. 17, 362–375 (1946).

    CAS  Google Scholar 

  117. J. D. Hoffman and J. J. Weeks, Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene, J. Res. Nat. Bur. Std. (U.S.) 66A, 13–28 (1962).

    Google Scholar 

  118. J. H. Magill, Crystallization and morphology of d, 1- and 1-poly(propylene oxide), Makromol. Chem. 86, 283–288 (1965).

    CAS  Google Scholar 

  119. B. Wunderlich and L. Melillo, Morphology and growth of extended chain crystals of polyethylene, Makromol. Chem. 118, 250–264 (1968).

    CAS  Google Scholar 

  120. T. Arakawa and B. Wunderlich, Thermodynamic properties of extended chain polymethylene single crystals, J. Polymer Sci. C 16, 653–658 (1967).

    CAS  Google Scholar 

  121. P. E. McMahon, R. L. McCullough, and A. A. Schlegel, Molecular mechanics of point defects in polyethylene, J. Appl. Phys. 38, 4123–4139 (1967).

    CAS  Google Scholar 

  122. P. Corradini, V. Petraccone, and G. Allegra, Chain folding in polyethylene crystals. The cooperative effect of bond angle deformation and rotational strain, Macromolecules 4, 770–771 (1971).

    CAS  Google Scholar 

  123. T. Oyama, K. Shiokawa, and T. Ishimaru, Chain conformations on the surface of polyethylene single crystals, in The Solid State of Polymers ( P. H. Geil, E. Baer, and Y. Wada, eds.), Marcel Dekker, New York (1974), pp. 229–239.

    Google Scholar 

  124. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O’Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Additivity rules for the estimation of thermochemical properties, Chem. Rev. 69, 279–324 (1969).

    CAS  Google Scholar 

  125. D. G. Thomas and L. A. K. Stavely, A study of the supercooling of drops of some molecular liquids, J. Chem. Soc. 1952, 4569–4577 (1952).

    Google Scholar 

  126. F. Gornick, G. S. Ross, and L. J. Frolen, Crystal nucleation in polyethylene: The droplet experiment, J. Polymer Sci. C 18, 79–91 (1967).

    CAS  Google Scholar 

  127. I. C. Sanchez and E. A. DiMarzio, Dilute-solution theory of polymer crystal growth. Some thermodynamic and predictive aspects for polyethylene, Macromolecules 4, 677–687 (1971).

    CAS  Google Scholar 

  128. F. C. Frank and M. Tosi, On the theory of polymer crystallization, Proc. Roy. Soc. (London) A263, 323–339 (1961).

    CAS  Google Scholar 

  129. F. Gornick and J. D. Hoffman, Nucleation in polymers, Ind. Eng. Chem. 58, 41–53 (1966).

    CAS  Google Scholar 

  130. J. I. Lauritzen, Jr. and E. Passaglia, Kinetics of crystallization in multicomponent systems: II. Chain folded polymer crystals, J. Res. Nat. Bur. Std. (U.S.) 71A, 261–275 (1967).

    CAS  Google Scholar 

  131. J. I. Lauritzen, Jr. and J. D. Hoffman, Formation of polymer crystals with folded chains from dilute solution, J. Chem. Phys. 31, 1680–1681 (1959).

    CAS  Google Scholar 

  132. F. P. Price, Markoff chain model for growth of polymer single crystals, J. Chem. Phys. 35, 1884–1892 (1961).

    CAS  Google Scholar 

  133. D. Turnbull and J. C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17, 71–73 (1949).

    CAS  Google Scholar 

  134. P. H. Geil, Folded molecules in lamellas crystallized from molten polymers, J. Appl. Phys. 33, 642–643 (1962).

    CAS  Google Scholar 

  135. A. J. Kovacs and A. Gonthier, Crystallization and fusion of self-seeded polymers. II. Growth rate, morphology and isothermal thickening of single crystals of low molecular weight poly(ethylene oxide) fractions, Kolloid-Z. u. Z. Polymere 250, 530–551 (1972).

    CAS  Google Scholar 

  136. H. G. Zachman, Der Einfluss der Konfigurationsentropie auf des Kristallasations-and Schmelzverhalten von hochpolymeren Stoffen, Kolloid-Z. u. Z. polymere 216–217, 180–191 (1967).

    Google Scholar 

  137. R. L. Cormia, F. P. Price, and D. Turnbull. Kinetics of crystal nucleation in polyethylene, J. Chem. Phys. 37, 1333–1340 (1962).

    CAS  Google Scholar 

  138. J. D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., John Wiley and Sons, New York (1970).

    Google Scholar 

  139. G. Adam and J. F. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965).

    CAS  Google Scholar 

  140. D. J. Blundell and A. Keller, The concentration dependence of the linear growth rate of polyethylene crystals from solution, J. Polymer Sci. B 6, 433–440 (1968).

    CAS  Google Scholar 

  141. I. C. Sanchez and E. A. DiMarzio, Dilute solution theory of polymer crystal growth: Fractionation effects, J. Res. Nat. Bur. Std. (U.S.) 76A, 213–223 (1972).

    CAS  Google Scholar 

  142. W. B. Hillig, A derivation of classical two-dimensional nucleation kinetics and the associated crystal growth laws, Acta Met. 14, 1868–1869 (1966).

    CAS  Google Scholar 

  143. J. I. Lauritzen, Jr., The effect of a finite substrate length upon the polymer crystal lamellar growth rate, J. Appl. Phys. 44, 4353–4359 (1973).

    CAS  Google Scholar 

  144. I. C. Sanchez and E. A. DiMarzio, Dilute solution theory of polymer crystal growth: A kinetic theory of chain folding, J. Chem. Phys. 55, 893–908 (1971).

    Google Scholar 

  145. W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Trans. Roy. Soc. A243, 299–358 (1951).

    Google Scholar 

  146. R. L. Parker, in Solid State Physics ( H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), Academic Press, New York (1970), Vol. 25, pp. 151–299.

    Google Scholar 

  147. J. I.Lauritzen, Jr., unpublished.

    Google Scholar 

  148. R. Chiang and P. J. Flory, Equilibrium between crystalline and amorphous phases in polyethylene, J. Am. Chem. Soc. 83, 2857–2862 (1961).

    CAS  Google Scholar 

  149. M. G. Broadhurst, The melting temperatures of the n-paraffins and the convergence temperature for polyethylene, J. Res. Nat. Bur. Std. (U.S.) 70A, 481–486 (1966).

    Google Scholar 

  150. P. J. Flory and A. Vrij, Melting points of linear-chain homologs. The normal paraffin hydrocarbons, J. Am. Chem. Soc. 85, 3548–3553 (1963).

    CAS  Google Scholar 

  151. A. M. Rijke and L. Mandelkern, Melting behavior of linear polyethylene crystallized by solution stirring, J. Polymer Sci. A-2 8, 225–242 (1970).

    CAS  Google Scholar 

  152. J. H. Magill, Crystallization kinetics of nylon 6, Polymer 3, 655–664 (1962).

    CAS  Google Scholar 

  153. J. H. Magill, Spherulitic crystillization studies of poly(tetramethyl-psilphenylene)-siloxane (TMPS). Part III, J. Polymer Sci. A-2 7, 1187–1195 (1969).

    CAS  Google Scholar 

  154. J. H. Magill, Crystallization of TMPS polymers, Part II, J. Polymer Sci. A-25, 89–99 (1967).

    Google Scholar 

  155. J. H. Magill, Crystallization of TMPS polymers, J. Appl. Phys. 35, 3249–3259 (1964).

    CAS  Google Scholar 

  156. d. J. H. Magill, private communication.

    Google Scholar 

  157. S. S. Pollack and J. H. Magill, Small-angle X-ray scattering from poly(tetramethyl-p-silphenylene)siloxane (TMPS) fractions, J. Polymer Sci. A-27, 551–561 (1969).

    Google Scholar 

  158. L. Mandelkern, N. L. Jain, and H. Kim, Temperature dependence of the growth rate of spherulites, J. Polymer Sci. A-26, 165–180 (1968).

    Google Scholar 

  159. E. G. Lovering and D. C. Wooden, Equilibrium melting points of the low-melting and high-melting crystalline forms of trans-1,4-polyisoprene, J. Polymer Sci. A-2 9, 175–179 (1971).

    CAS  Google Scholar 

  160. M. L. Dannis, Thermal expansion measurements and transition temperatures, first and second order, J. Appl. Polymer Sci. 1, 121–126 (1959).

    CAS  Google Scholar 

  161. E. G. Lovering, The relationship between molecular weight and spherulitic growth rates in trans-1,4-polyisoprene, J. Polymer Sci. C30, 329–338 (1970).

    Google Scholar 

  162. D. R. Carter and E. Baer, Lamellar crystallization and melting of polyoxymethylene, J. Appl. Phys. 37, 4060–4065 (1966).

    CAS  Google Scholar 

  163. W. H. Linton and H. H. Goodman, Physical properties of high molecular weight acetal resins, J. Appl. Polymer Sci. 1, 179–184 (1959).

    CAS  Google Scholar 

  164. E. Baer and D. R. Carter, Rate of spherulitic crystallization with chain folds in polyoxymethylene, J. Appl. Phys. 35, 1895–1897 (1964).

    CAS  Google Scholar 

  165. G. T. Davis and R. K. Eby, The glass transition of polyethylene: Volume relaxation, J. Appl. Phys. 44, 4274–4281 (1973).

    CAS  Google Scholar 

  166. J. D. Hoffman, G. S. Ross, L. Frolen, and J. I. Lauritzen, Jr., On the growth rate of spherulites and axialites from the melt in poly(ethylene) fractions: Regime I and Regime II crystallization, J. Res. Nat. Bur. Std. (U.S.) 79A (1975), in press.

    Google Scholar 

  167. J. Brandrup and E. H. Immergut (eds.), Polymer Handbook, Interscience Publishers, New York (1966).

    Google Scholar 

  168. J. Powers, J. D. Hoffman, J. J. Weeks, and F. A. Quinn, Jr., Crystallization kinetics and polymorphic transformations in polybutene-1, J. Res. Nat. Bur. Std. (U.S.) 69A, 335–345 (1965).

    Google Scholar 

  169. R. G. Crystal, Polymeric nature of selenium crystallization. II. Crystallization kinetics and secondary crystallization J. Polymer Sci. A-2 8, 2153–2161 (1970).

    CAS  Google Scholar 

  170. F. J. Padden, Jr. and H. D. Keith, Spherulitic crystallization in polypropylene, J. Appl. Phys. 30, 1479–1484 (1959).

    CAS  Google Scholar 

  171. L. Mandelkern, F. A. Quinn, Jr., and D. E. Roberts, Thermodynamics of crystallization in high polymers: gutta percha, J. Am. Chem. Soc. 78, 926–932 (1956).

    CAS  Google Scholar 

  172. V. F. Holland and P. H. Lindenmeyer, Morphology and crystal growth rate of polyethylene crystalline complexes, J. Polymer Sci. 57, 589–608 (1962).

    CAS  Google Scholar 

  173. M. Cooper and R. St. John Manley, Growth kinetics of polyethylene crystals from dilute xylene solution, J. Polymer Sci., Polymer Letters Ed. 11, 363–367 (1973).

    CAS  Google Scholar 

  174. R. L. Miller, Polymer crystal formation: On an analysis of the dilute solution lamellar thickness—crystallization temperature data for poly(ethylene), Kolloid-Z. u. Z. Polymere 225, 62–69 (1968).

    CAS  Google Scholar 

  175. D. H. Jones, A. J. Latham, A. Keller, and M. Girolamo, Fold length of single crystals of polystyrene: A conflict with crystallization theories at high supercoolings, J. Polymer Sci., Polymer Phys. Ed. 11, 1759–1767 (1973).

    CAS  Google Scholar 

  176. N. Overbergh, H. Berghmans, and G. Smets, Influence of thermal history on the melting behavior of isotactic polystyrene, J. Polymer Sci. C 38, 237–250 (1972).

    Google Scholar 

  177. N. Overbergh, H. Berghmans, G. Groenickx, and H. Reynaers, Reorganization of semicrystalline isotactic polystyrene studied by electron microscopy and small-angle X-ray diffraction, Paper A-5 IUPAC Int. Sym. on Macromolecules, Aberdeen, Scotland, September 1973.

    Google Scholar 

  178. T. Kawai and A. Keller, On the effect of the crystallization temperature on the habit and fold length of polyethylene single crystals, Phil. Mag. 11, 1165–1177 (1965).

    CAS  Google Scholar 

  179. N. Hirai, T. Tokumori, T. Katayama, S. Fujita, and Y. Yamashita, Thickness of high polymer single crystals precipitated from solution, Rep. Res. Lab. for Surface Science, Okayama Univ. 2, 91–99 (1963).

    CAS  Google Scholar 

  180. G. Lieser and E. W. Fischer, private communication; G. Lieser, Master’s Thesis, Univ. Mainz, Mainz, Germany, 1966.

    Google Scholar 

  181. T. Korenaga, F. Hamada, and A. Nakajima, Surface free energy of poly(oxymethylene) single crystals grown in various solvents, Polymer J. 3, 21–27 (1972).

    CAS  Google Scholar 

  182. E. Ergoz and L. Mandelkern, Solvent influence on the dilute solution crystallization of polyethylene and polyoxymethylene, J. Polymer Sci., Polymer Letters Ed. 11, 73–79 (1973).

    CAS  Google Scholar 

  183. P. R. Swan, Polyethylene unit cell variations with temperature, J. Polymer Sci. 56, 403–407 (1962).

    CAS  Google Scholar 

  184. G. T. Davis, R. K. Eby, and J. P. Colson, Thermal expansion of polyethylene unit cell: Effect of lamella thickness, J. Appl. Phys. 41, 4316–4326 (1970).

    CAS  Google Scholar 

  185. D. R. Holmes, C. W. Bunn, and D. J. Smith, Crystal structure of polycaproamide: nylon 6, J. Polymer Sci. 17, 159–177 (1955).

    CAS  Google Scholar 

  186. D. Fisher, Crystal structures of gutta percha, Proc. Phys. Soc. B66, 7–16 (1953).

    Google Scholar 

  187. G. Natta, P. Corradini, and I. W. Bassi, Crystal structure of isotactic polystyrene, Nouvo Cimento (Suppl. 1) 15, 68–82 (1960).

    CAS  Google Scholar 

  188. E. Sauter, Ein Modell der Hauptvalenzkette im Makromolekülgitter der Polyoxymethylene, Z. Physik. Chem. 21B, 186–197 (1933).

    Google Scholar 

  189. G. Vidotto, D. Lévy, and A. J. Kovacs, Cristallisation et fusion des polymères autoensemencés. I. Polybutène-1, Polyéthylène et Polyoxyéthylène de haute masse moléculaire, Kolloid-Z. u. Z. Polymere 230, 289–305 (1969).

    CAS  Google Scholar 

  190. H. Tadokoro, Y. Chatani, T. Yoshihara, S. Tahara, and S. Murahashi, Structural studies on polyethers [-(CH2)m O-jnH, molecular structure of polyethylene oxide, Makromol. Chem. 73, 109–127 (1964).

    CAS  Google Scholar 

  191. A. J. Bradley, The crystal structures of the rhombohedral forms of selenium and tellurium, Phil. Mag. 48, 477–496 (1924).

    CAS  Google Scholar 

  192. J. P. Colson and R. K. Eby, Melting temperatures of copolymers, J. Appl. Phys. 37, 3511–3514 (1966);

    CAS  Google Scholar 

  193. I. C. Sanchez and R. K. Eby, Crystallization of random copolymers, J. Res. Nat. Bur. Std. (U.S.) 77A. 353–358 (1973).

    CAS  Google Scholar 

  194. D. C. Bassett and R. Davitt, private communication.

    Google Scholar 

  195. J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1962), p. 35.

    Google Scholar 

  196. J. I. Lauritzen, Jr., E. A. DiMarzio, and E. Passaglia, Kinetics of growth of multicomponent chains, J. Chem. Phys. 45, 4444–4454 (1966).

    CAS  Google Scholar 

  197. J. I. Lauritzen, Jr., E. Passaglia, and E. A. DiMarzio, Kinetics of crystallization in multicomponent systems: I. Binary mixtures of n-paraffins, J. Res. Nat. Bur. Std. (U.S.) 71A, 245–259 (1967).

    CAS  Google Scholar 

  198. G. S. Ross and L. J. Frolen, unpublished.

    Google Scholar 

  199. Private communication from Prof. P. H. Geil; see also J. E. Breedon, M.S. Thesis, Crack formation in polymer single crystals, Case-Western Reserve Univ., Cleveland, Ohio (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Hoffman, J.D., Davis, G.T., Lauritzen, J.I. (1976). The Rate of Crystallization of Linear Polymers with Chain Folding. In: Hannay, N.B. (eds) Treatise on Solid State Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2664-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2664-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2666-3

  • Online ISBN: 978-1-4684-2664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics