Skip to main content
Log in

Thermal and chromatographic characterization of biomass, lipid material, and microalgal biodiesel from Monoraphidium sp.

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The cultivation of microalgae for biodiesel production order emerges as an extremely promising aspect, because the culture of these vegetables microorganisms includes short breeding cycle, smaller areas for planting, and residual biomass rich in protein content. The presence of proteins in biomass and triacylglycerols (TAG) in lipid material (LM) of microalgal Monoraphidium sp. were verified by thermogravimetry (TG). The LM of the microalgae was transesterified (alkaline), the fatty profile evidenced qualitatively and quantitatively by gas chromatography (GC) and used alternatively and quantitatively by TG. The thermal results showed protein content in biomass and TAG in microalgal ML. Chromatographic (GC) data revealed high content of saturated fatty acids (approximately 70 %) being the eicosanoic acid its major constituent (33.7 %), which resulted in a high thermal stability of biodiesel. The conversion in transesterification was approximately 98 % by GC and 97 % by TG, these values being compliant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amin S. Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag. 2009. doi:10.1016/j.enconman.2009.03.001.

    Google Scholar 

  2. Vasudevan PT, Briggs M. Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol. 2008. doi:10.1007/s10295-008-0312-2.

    Google Scholar 

  3. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010. doi:10.1016/j.rser.2009.07.020.

    Google Scholar 

  4. Harum R, Jason WSY, Cherrington TM, Danquah MK. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy. 2011. doi:10.1016/j.apenergy.2010.10.048.

    Google Scholar 

  5. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007. doi:10.1016/j.biotechadv.2007.02.001.

    Google Scholar 

  6. Ahmad AL, Yasin Mat NH, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev. 2011;15:584–93. doi:10.1016/j.rser.2010.09.018.

    Article  CAS  Google Scholar 

  7. Lee JY, Yoo C, Jun SY, Ahn CY. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 2010. doi:10.1016/j.biortech.2009.03.058.

    Google Scholar 

  8. Chojnacka K, Chojnacki A, Górecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005. doi:10.1016/j.chemosphere.2004.10.005.

    Google Scholar 

  9. Wang T, Jónsdóttir R, Kristinsson HG, Hreggvidsson GO, Jónsson JO, Thorkelsson G, Ólafsdóttir G. Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmate. Food Sci Technol. 2010. doi:10.1016/j.lwt.2010.05.010.

    Google Scholar 

  10. Spoloare P, Cassan CJ, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006. doi:10.1263/jbb.101.87.

    Google Scholar 

  11. Garcia CC, Franco PIBM, Zuppa TO, Antoniosi Filho NR, Leles MIG. Thermal stability studies of some cerrado plant oils. J Therm Anal Calorim. 2007. doi:10.1007/s10973-006-7769-x.

    Google Scholar 

  12. Dweck J, Sampaio CMS. Analysis of the thermal decomposition of commercial vegetable oils in air by simultaneous TG/DTA. J Therm Anal Calorim. 2004. doi:10.1023/B:JTAN.0000027124.96546.0f.

    Google Scholar 

  13. Jain S, Sharma MP. Thermal stability of biodiesel and its blends: a review. Renew Sustain Energy Rev. 2011. doi:10.1016/j.rser.2010.08.022.

    Google Scholar 

  14. Kállay-Menyhárd A, Menczel JD, Prime RB (eds): Thermal analysis of polymers fundamental and applications. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-010-1071-7.

  15. Campanella A, Muncief R, Harold MP, Griffith DC, Whitton NM, Weber RS. Thermolysis of microalgae and duckweed in a CO2-swept fixed-bed reactor: bio-oil yield and compositional effects. Bioresour Technol. 2012. doi:10.1016/j.biortech.2011.12.115.

    Google Scholar 

  16. Phukan MM, Chutia RS, Konwar BK, Kataki R. Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy. 2011. doi:10.1016/j.apenergy.2010.11.026.

    Google Scholar 

  17. Knothe G. Analyzing biodiesel: standards and Other Methods. JAOCS. 2006. doi:10.1007/s11746-006-5033-y.

    Google Scholar 

  18. Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ. Food commodities from microalgae. Curr Opin Biotechnol. 2012. doi:10.1016/j.copbio.2012.09.012.

    Google Scholar 

  19. Gao MT, Shimamura T, Ishida N, Takahashi H. Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. J Biosci Bioeng. 2012. doi:10.1016/j.jbiosc.2012.04.002.

    Google Scholar 

  20. Melo WC, Silva DB, Júnior NP, Anna LMMS, Santos AS. Produção de etanol a partir de torta de mamona (ricinus communis l.) E avaliação da letalidade da torta hidrolisada para camundongos. Química Nova. 2008. doi:10.1590/S0100-40422008000500031.

    Google Scholar 

  21. Archanaa S, Moise S, Suraishkumar GK. Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method. Biomass Bioenergy. 2012. doi:10.1016/j.biombioe.2012.07.002.

    Google Scholar 

  22. Goodrum JW. Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass Bioenergy. 2002. doi:10.1016/S0961-9534(01)00074-5.

    Google Scholar 

  23. Tutunea D. Thermal investigation of biodiesel blends derived from rapeseed oil. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2213-x.

    Google Scholar 

  24. Morais MG, Costa JAV. Fatty acids profile of microalgae cultivated with carbon dioxide. Ciências Agrotécnicas. 2008;32:1245–51.

    Article  Google Scholar 

  25. Foglia TA, Jones KC, Nunez A, Phillips JG, Mittelbach M. Comparison of Chromatographic Methods for the Determination of Bound Glycerol in Biodiesel. Chromatographia. 2004. doi:10.1365/s10337-004-0372-z.

    Google Scholar 

  26. Rodríguez RP, Borroto YS, Lapuerta M, Pérez LG, Verhelst S. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Convers Manag. 2013. doi:10.1016/j.enconman.2012.07.023.

    Google Scholar 

  27. Lôbo IP, Ferreira SLC, Cruz RS. Biodiesel: parâmetros de qualidade e métodos analíticos. Química Nova. 2009. doi:10.1590/S0100-40422009000600044.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Fernandes Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A.F., Gomes, M.P.S., Di Souza, L. et al. Thermal and chromatographic characterization of biomass, lipid material, and microalgal biodiesel from Monoraphidium sp.. J Therm Anal Calorim 119, 1861–1866 (2015). https://doi.org/10.1007/s10973-014-4347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4347-5

Keywords

Navigation