Skip to main content
Log in

A comparison study on thermal decomposition behavior of poly(l-lactide) with different kinetic models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermal study of poly(l-lactide) under nitrogen atmosphere has been carried out through thermogravimetric (TG) analysis and differential thermal analysis (DTA) measurements. The experimental data were collected with the heating rates of 2.5 to 30 K min−1 and from ambient temperature up to 750 K. The thermal features were obtained from resultant TG and DTA curves. The results show that the thermal decomposition was mainly in the temperature range of 550–660 K. Kinetic analyses of the mass loss versus temperature data have been performed with four different temperature integral models, including the distributed activation energy model (DAEM), Flynn–Wall–Ozawa, Coats–Redfern, and Tang models. Through the DAEM model, the activation energy distribution function and the relationship between activation energy and pre-exponential factor have been obtained. The activation energy thus obtained at different conversion levels ranges from 91.34 to 107.44 kJ mol−1, and similar results have been produced using the other three models. With these kinetic parameters, the TG curves have been simulated with the above four models by assuming the first-order reaction mechanism, resulting in satisfactory simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84.

    Article  CAS  Google Scholar 

  2. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    Article  CAS  Google Scholar 

  3. McNeill IC, Leiper HA. Degradation studies of some polyesters and polycarbonates-1. Polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab. 1985;11:267–85.

    Article  CAS  Google Scholar 

  4. Leiper HA, McNeill IC. Degradation studies of some polyesters and polycarbonates-2. Polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab. 1985;11:309–26.

    Article  Google Scholar 

  5. Babanalbandi A, Hill DJT, Hunter DS, Kettle L. Thermal stability of poly(lactic acid) before and after γ-radiolysis. Polym Int. 1999;48:980–4.

    Article  CAS  Google Scholar 

  6. Aoyagi Y, Yamashita K, Doi Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab. 2002;76:53–9.

    Article  CAS  Google Scholar 

  7. Cam D, Marucci M. Influence of residual monomers and metals on poly(l-lactide) thermal stability. Polymer. 1997;38:1879–84.

    Article  CAS  Google Scholar 

  8. Noda M, Okuyama H. Thermal catalytic depolymerization of poly(l-lactic acid) oligomer into L, l-lactide: effects of Al, Ti, Zn, and Zr compounds as catalysts. Chem Pharm Bull. 1999;47:467–71.

    Article  CAS  Google Scholar 

  9. Fan Y, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T. Pyrolysis kinetics of poly(l-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab. 2003;79:547–62.

    Article  CAS  Google Scholar 

  10. Nishida H, Moria T, Hoshihara S, Fan Y, Shirai Y, Endo T. Effect of tin on poly(l-lactic acid) pyrolysis. Polym Degrad Stab. 2003;81:515–23.

    Article  CAS  Google Scholar 

  11. Fan Y, Nishida H, Mori T, Shirai Y, Endo T. Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l, L-lactide formation. Polymer. 2004;45:1197–205.

    Article  CAS  Google Scholar 

  12. Fan Y, Nishida H, Shirai Y, Endo T. Thermal stability of poly(l-lactide): influence of end protection by acetyl group. Polym Degrad Stab. 2004;84:143–9.

    Article  CAS  Google Scholar 

  13. Mori T, Nishida H, Shirai Y, Endo T. Effects of chain end structures on pyrolysis of poly(l-lactic acid) containing tin atoms. Polym Degrad Stab. 2004;84:243–51.

    Article  CAS  Google Scholar 

  14. Fan Y, Nishida H, Shirai Y, Tokiwa Y, Endo T. Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polym Degrad Stab. 2004;86:197–208.

    Article  CAS  Google Scholar 

  15. Chrissafis K. Detail kinetic analysis of the thermal decomposition of PLA with oxidized multi-walled carbon nanotubes. Thermochim Acta. 2010;511:163–7.

    Article  CAS  Google Scholar 

  16. Kim H-S, Chae YS, Kwon HI, Yoon J-S. Thermal degradation behaviour of multi-walled carbon nanotube-reinforced poly(l-lactide) nanocomposites. Polym Int. 2009;58:826–31.

    Article  CAS  Google Scholar 

  17. Zhou Q, Xanthos M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab. 2009;94:327–38.

    Article  CAS  Google Scholar 

  18. Carrasco F, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition. Chem Eng J. 2011;178:451–60.

    Article  CAS  Google Scholar 

  19. Motoyama T, Tsukegi T, Shirai Y, Nishida H, Endo T. Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l,l-lactide. Polym Degrad Stab. 2007;92:1350–8.

    Article  CAS  Google Scholar 

  20. Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test. 2013;32:918–26.

    Article  CAS  Google Scholar 

  21. Zeng C, Zhang N-W, Feng S-Q, Ren J. Thermal stability of copolymer derived from l-lactic acid and poly(tetramethylene) glycol through direct polycondensation. J Therm Anal Calorim. 2013;111:633–46.

    Article  CAS  Google Scholar 

  22. Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  23. Dai L, Wang L-Y, Yuan T-Q, He J. Study on thermal degradation kinetics of cellulose-graft-poly(l-lactic acid) by thermogravimetric analysis. Polym Degrad Stab. 2014;99:233–9.

    Article  CAS  Google Scholar 

  24. Perinović S, Andričić B, Erceg M. Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochim Acta. 2010;510:97–102.

    Article  Google Scholar 

  25. Vyazovkin S. Model-free kinetics—staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83(1):45–51.

    Article  CAS  Google Scholar 

  26. Reverte C, Dirion JL, Cabassud M. Kinetic model identification and parameters estimation from TGA experiments. J Anal Appl Pyrolysis. 2007;79(1–2):297–305.

    Article  CAS  Google Scholar 

  27. Budrugeac P, Segal E. Application of isoconversional and multivariate non-linear regression methods for evaluation of the degradation mechanism and kinetic parameters of an epoxy resin. Polym Degrad Stab. 2008;93(6):1073–80.

    Article  CAS  Google Scholar 

  28. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab. 2010;95(2):116–25.

    Article  CAS  Google Scholar 

  29. Cai JM, Liu RH. Parametric study of the nonisothermal nth-order distributed activation energy model involved the Weibull distribution for biomass pyrolysis. J Therm Anal Calorim. 2007;89:971–5.

    Article  CAS  Google Scholar 

  30. Li Z, Liu C, Chen Z, Qian J, Zhao W, Zhu Q. Analysis coals and biomass pyrolysis using the distributed activation energy model. Bioresour Technol. 2009;100:948–52.

    Article  CAS  Google Scholar 

  31. Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87:414–21.

    Article  CAS  Google Scholar 

  32. Mani T, Murugan P, Mahinpey N. Determination of distributed activation energy model kinetic parameters using annealing optimization method for nonisothermal pyrolysis of lignin. Ind Eng Chem Res. 2009;48:1464–7.

    Article  CAS  Google Scholar 

  33. Miura K, Mae K, Shimada M, Minami H. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals. Energy Fuel. 2001;15:629–36.

    Article  CAS  Google Scholar 

  34. Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuel. 1998;12:864–9.

    Article  CAS  Google Scholar 

  35. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  36. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  37. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. 2013;111(1):763–71.

    Article  CAS  Google Scholar 

  38. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand Sect A. 1966;70A(6):487–523.

    Article  Google Scholar 

  39. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  40. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  41. He W, Deng F, Liao G-X, Lin W, Jiang Y-Y, Jian X-G. Kinetics of thermal degradation of poly(aryl ether) containing phthalazinone and life estimation. J Therm Anal Calorim. 2010;100:1055–62.

    Article  CAS  Google Scholar 

  42. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Nonisothermal degradation kinetics of filled with rice husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.

    Article  CAS  Google Scholar 

  43. Madhysudanan PM, Krishnan K, Ninan KN. New equations for kinetic analysis of non-isothermal reactions. Thermochim Acta. 1993;221:13–21.

    Article  Google Scholar 

  44. Tudorachi N, Lipsa R, Mustata FR. Thermal degradation of carboxymethyl starch–g-poly(lactic acid) copolymer by TG–FTIR–MS analysis. Ind Eng Chem Res. 2012;51(48):15537–45.

    Article  CAS  Google Scholar 

  45. Seo DK, Park SS, Hwang JH, Yu T. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2010;89:66–73.

    Article  CAS  Google Scholar 

  46. Willium PT, Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy. 1996;7(3):233–50.

    Article  Google Scholar 

  47. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  48. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescud C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  49. Cai J, Li T, Liu R. A critical study of the Miura-Maki integral method for the estimation of the kinetic parameters of the distributed activation energy model. Bioresour Technol. 2011;102:3894–9.

    Article  CAS  Google Scholar 

  50. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Kinetics of the thermal decomposition of processed poly(lactic acid). Polym Degrad Stab. 2010;95:2508–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tianjin University of Commerce (TJUC–080015) for partially funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Ye, Qq. & Teng, Lj. A comparison study on thermal decomposition behavior of poly(l-lactide) with different kinetic models. J Therm Anal Calorim 119, 2015–2027 (2015). https://doi.org/10.1007/s10973-014-4311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4311-4

Keywords

Navigation