Skip to main content
Log in

Synthesis of novel metal-containing epoxy polymers and their structural characterization by means of FT-IR and coupled TG/MS measurements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel copper containing epoxy polymers have been synthesized using copper(II) formamidine complex [Cu(ampf)Cl2], ampf = N,N′-bis(4-acetyl-5-methylpyrazole-3-yl)formamidine, as curing agent for diglycidyl ether of bisphenol A-based epoxy resins (Araldite and its oligomer consisting of 3–4 monomer units). The curing reaction was performed at room temperature without catalyst. In order to prove the polymerization reaction, differential scanning calorimetry (DSC) was applied. Highly exothermic peaks around 150 °C refer to the polymerization, and according to DSC results, the epoxy resins above 200 °C were almost completely converted to the corresponding metal-containing polymer. The proposed structure of the hybrid polymers was confirmed by FT-IR analysis. Gel permeation chromatography analysis shows that the average molar masses of the polymers are in the range from 3,000 to 50,000 g mol−1. The low conductivities of the hybrid materials in tetrahydrofuran confirm the non-ionic structure of the new polymers in solution. The thermal stability and the decomposition mechanism of the components of the reaction mixture and the new polymers were studied by coupled TG/DTA-MS measurements. The thermal data were analysed also with the aim to obtain additional information about the composition of the synthesized materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ellis B. Chemistry and technology of epoxy resins. Glasgow: Blackie Academic and Professional; 1993. p. 37.

    Book  Google Scholar 

  2. Cella J, Schwabacher A, Shuls A. Cationic chelate salts of main group elements as curing agents for epoxy resins. Znd Eng Chem Prod Res Deu. 1983;22:20–5.

    Article  CAS  Google Scholar 

  3. Kurnoskin AV, Lapitsky VA. Sinteza Struktura Svoistva Medsoderzhashchikh Polimerov, Abstracts of Papers. Vsesoyuznaya Konferentsiya, Zvenigorod, 1988, 55.

  4. Kurnoskin AV. Metal-containing epoxy polymers. In: Cheremisinoff NP, Cheremisinoff PN, editors. Handbook of applied polymer processing technology. New York: Marcel Dekker; 1996. p. 703–65.

    Google Scholar 

  5. Kurnoskin AV. Metalliferous epoxy-chelate polymers: analytical review. JMS Rev Macromol Chem Phys. 1996;C36:457–599.

    Article  CAS  Google Scholar 

  6. Kurnoskin AV. Epoxy polymer modification with metals. Polym Compos. 1993;14:481–90.

    Article  CAS  Google Scholar 

  7. Lin KF, Shu WY, Wey TL. Organotransition-metal complexes as additives for epoxy resins: Part 1. Their effects on toughness and morphology of epoxy resins. Polymer. 1993;34:277–88.

    Article  CAS  Google Scholar 

  8. Lin KF, Wang WH. Imidazole and chromium acetylacetonate as additives for the cure and fracture-toughness of epoxy resins and their composites. Polym Compos. 1995;16:269–75.

    Article  CAS  Google Scholar 

  9. Lin KF, Shu WY, Wey TL. Organotransition-metal complexes as additives for epoxy resins: Part 2. Interaction with epoxy resins. Polymer. 1993;34:2162–8.

    Article  CAS  Google Scholar 

  10. Anand M, Srivastava AK. Synthesis and characterization of epoxy resins containing arsenic acrylate. Polym Eng Sci. 1997;37:183–7.

    Article  Google Scholar 

  11. Anand M, Srivastava AK. Synthesis and characterization of epoxy resins containing chromium acrylate. Angew Makromol Chem. 1994;219:1–10.

    Article  CAS  Google Scholar 

  12. Anand M, Srivastava AK. Synthesis of zinc-containing epoxy resin. J Appl Polym Sci. 1994;51:203–11.

    Article  CAS  Google Scholar 

  13. Kurnoskin AV, Korshikov LA, Kanovich MZ, Filatova LD, Soloveva EK. Optimization of the curing regime for epoxychelate composite materials with the results of evaluation of residual stresses. Fibre Chem. 1995;27:266–9.

    Article  Google Scholar 

  14. Chantarasiria N, Tuntulania T, Tongraunga P, Seangprasertkit-Mageea R, Wannarong W. New metal-containing epoxy polymers from diglycidyl ether of bisphenol A and tetradentate Schiff base metal complexes. Eur Polym J. 2000;36:695–702.

    Article  Google Scholar 

  15. Kurnoskin AV, Kanovitch MZ, Ilyin VM, Gusev LL, Bekeshko VV. Application of epoxychelate composites in automobile industry. Inf Bull Khim Prom SEV. 1990;6:25–9.

    Google Scholar 

  16. Hamerton I, Howlin BJ, Jepson P. Metals and coordination compounds as modifiers for epoxy resins. Coord Chem Rev. 2002;224:67–85.

    Article  CAS  Google Scholar 

  17. Kurnoskin AV. Epoxy chelate copper-containing polymers: their chemistry and production. Polym Plas Tech Eng. 1992;31:505–25.

    Article  CAS  Google Scholar 

  18. Kurnoskin AV. Metalliferous epoxy chelate polymers: 1. Synthesis and properties. Polymer. 1993;34:1060–7.

    Article  CAS  Google Scholar 

  19. Hollό B, Leovac VM, Bombicz P, Kovács A, Jovanović LS, Bogdanović G, Kojić V, Divjaković V, Joksović MD, Mészáros Szécsényi K. Synthesis, structural, DFT, and cytotoxicity studies of CuII and NiII complexes with 3-aminopyrazole derivatives. Aust J Chem. 2010;63:1557–64.

    Article  Google Scholar 

  20. Prasad RL, Kushwaha A, Szilágyi IM, Kótai L. Solid state thermal degradation behaviour of 1-d coordination polymers of Ni(II) and Cu(II) bridged by conjugated ligand. J Therm Anal Calorim. 2013;114:653–64.

    Article  CAS  Google Scholar 

  21. Szilágyi IM, Deák A, Várhelyi C Jr, Madarász J, Pokol G, Gömöry Á, Várhelyi C. Structural and thermal study of asymmetric a-dioxime complexes of Co(III) with Cl and methyl-pyridines. Polyhedron. 2010;10:2185–9.

    Article  Google Scholar 

  22. Tatsumiya S, Yokokawa K, Miki K. A dynamic DSC study of the curing process of epoxy resin. J Therm Anal. 1997;49:123–9.

    Article  CAS  Google Scholar 

  23. Rosu D, Cascaval C, Mustata F, Ciobanu C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim Acta. 2002;383:119–27.

    Article  CAS  Google Scholar 

  24. Silverstein R, Bassler C, Morrill T. Spectrometric identification of organic compounds, vol. 3rd. New York: Wiley International Edition; 1974. p. 108.

    Google Scholar 

  25. Quan C, Li A, Gao N. Research on pyrolysis of PCB waste with TG-FTIR and Py-GC/MS. J Therm Anal Calorim. 2012;110:1463–70.

    Article  CAS  Google Scholar 

  26. Xu J, He Z, Wu W, Ma H, Xie J, Qu H, Jiao Y. Study of thermal properties of flame retardant epoxy resin treated with hexakis[p-(hydroxymethyl)phenoxy]cyclotriphosphazene. J Therm Anal Calorim. 2013;114:1341–50.

    Article  CAS  Google Scholar 

  27. Hunyadi D, Sajo I, Szilágyi IM. Structure and thermal decomposition of ammonium metatungstate. J Therm Anal Calorim. 2014;116:329–37.

    Article  CAS  Google Scholar 

  28. Balabanovicha AI, Hornunga A, Merza D, Seifert H. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polym Degrad Stab. 2004;85:713–23.

    Article  Google Scholar 

  29. Wang X, Hu Y, Song L, Xing W, Lu H. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substituted organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrol. 2011;92:164–70.

    Article  CAS  Google Scholar 

  30. Qian L, Ye L, Qiu Y, Qu S. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer. 2011;52:5486–93.

    Article  CAS  Google Scholar 

  31. http://www.webbook.nist.gov/. Accessed 12 Dec 2013.

  32. Ahamad T, Alshehri SM. Thermal degradation and evolved gas analysis of epoxy (DGEBA)/novolac resin blends (ENB) during pyrolysis and combustion. J Therm Anal Calorim. 2013;111:445–51.

    Article  CAS  Google Scholar 

  33. Huang Z, Shi W. Thermal behavior and degradation mechanism of poly(bisphenyl acryloxyethyl phosphate) as a UV curable flame-retardant oligomer. Polym Degrad Stab. 2006;91:1674–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia; contract Grant numbers: III 45022 and ON 172014. B. Barta Holló acknowledges a Domus Hungarica Fellowship. I. M. Szilágyi acknowledges a János Bolyai Research Fellowship of the Hungarian Academy of Sciences, and an OTKA-PD-109129 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan S. Ristić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristić, I.S., Barta Holló, B., Budinski-Simendić, J. et al. Synthesis of novel metal-containing epoxy polymers and their structural characterization by means of FT-IR and coupled TG/MS measurements. J Therm Anal Calorim 119, 1011–1021 (2015). https://doi.org/10.1007/s10973-014-4242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4242-0

Keywords

Navigation