Skip to main content
Log in

Structure and thermal decomposition of ammonium metatungstate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structure and morphology of ammonium metatungstate (AMT), (NH4)6[H2W12O40]⋅4H2O, and its thermal decomposition in air and nitrogen atmospheres were investigated by SEM, FTIR, XRD, and TG/DTA-MS. The cell parameters of the AMT sample were determined and refined with a full profile fit. The thermal decomposition of AMT involved several steps in inert atmosphere: (i) release of crystal water between 25 and 200 °C resulting in dehydrated AMT, (ii) formation of an amorphous phase between 200 and 380 °C, (iii) from which hexagonal WO3 formed between 380 and 500 °C, and (iv) which then transformed into the more stable m-WO3 between 500 and 600 °C. As a difference in air, the as-formed NH3 ignited with an exothermic heat effect, and nitrous oxides formed as combustion products. The thermal behavior of AMT was similar to ammonium paratungstate (APT), (NH4)10[H2W12O42]⋅4H2O, the only main difference being the lack of dry NH3 evolution between 170 and 240 °C in the case of AMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lassner E, Schubert WD. Tungsten properties, chemistry, technology of the element, alloys, and chemical compounds. New York: Kluwer Academic/Plenum Publishers; 1999.

    Google Scholar 

  2. Hammond C, Straus J, Righettoni M, Pratsinis SE, Hermans I. Nanoparticulate tungsten oxide for catalytic epoxidations. ACS Catal. 2013;3:321–7.

    Article  CAS  Google Scholar 

  3. Di Valentin C, Wang F, Pacchioni G. Tungsten oxide in catalysis and photocatalysis: hints from DFT. Topics Catal. 2013;56:1404–19.

    Article  CAS  Google Scholar 

  4. Veith GM, Lupini AR, Pennycook SJ, Alberto V, Prati L, Dudney NJ. Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. Catal Today. 2007;122:248–53.

    Article  CAS  Google Scholar 

  5. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem. 2010;20:1683–90.

    Article  CAS  Google Scholar 

  6. Szilágyi IM, Fórizs B, Rosseler O, Szegedi Á, Németh P, Király P, Tárkányi G, Vajna B, Varga–Josepovits K, László K, Tóth AL, Baranyai P, Leskelä M. WO3 photocatalysts: influence of structure and composition. J Catal. 2012;294:119–27.

    Article  CAS  Google Scholar 

  7. Lin CT, Tsai TH. Solution volume effect of photodegradation by 1-D WO3 nanorods via microwave-assisted solvothermal heating under the UV irradiation. Asian J Chem. 2013;25:7098–102.

    CAS  Google Scholar 

  8. Nandiyanto ABD, Arutanti O, Ogi T, Iskandar F, Kim TO, Okuyama K. Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci. 2013;101:523–32.

    Article  CAS  Google Scholar 

  9. Liu BX, Wang JS, Li HY, Wu JS, Zhou ML, Zuo TY. Facile synthesis of hierarchical hollow mesoporous Ag/WO3 spheres with high photocatalytic performance. J Nanosci Nanotech. 2013;13:4117–22.

    Article  CAS  Google Scholar 

  10. Karacsonyi E, Baia L, Dombi A, Danciu V, Mogyorosi K, Pop LC, Kovacs G, Cosoveanu V, Vulpoi A, Simon S, Pap Z. The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catal Today. 2013;208:19–27.

    Article  CAS  Google Scholar 

  11. Szilágyi IM, Saukko S, Mizsei J, Tóth AL, Madarász J, Pokol G. Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 2010;12:1857–60.

    Article  CAS  Google Scholar 

  12. Szilágyi IM, Wang L, Gouma PI, Balázsi C, Madarász J, Pokol G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater Res Bull. 2009;44:505–8.

    Article  CAS  Google Scholar 

  13. Balázsi C, Wang L, Zayim EO, Szilágyi IM, Sedlackova K, Pfeifer J, Tóth AL, Gouma PI. Nanosize hexagonal tungsten oxide for gas sensing applications. J Eur Ceram Soc. 2008;28:913–7.

    Article  CAS  Google Scholar 

  14. Szilágyi IM, Saukko S, Mizsei J, Király P, Tárkányi G, Tóth AL, Szabó A, Varga-Josepovits K, Madarász J, Pokol G. Controlling the composition of nanosize hexagonal WO3 for gas sensing. Mater Sci Forum. 2008;589:161–5.

    Article  Google Scholar 

  15. Wang L, Pfeifer J, Balázsi C, Szilágyi IM, Gouma PI. Nanostructured hexagonal tungsten oxides for ammonia sensing. Proceedings of SPIE—The International Society for Optical Engineering Nanosensing: Materials, Devices, and Systems III. 2007;6769:67690E.

  16. Balázsi C, Sedlackova K, Pfeifer J, Tóth AL, Zayim EA, Szilágyi IM, Wang LS, Kalyanasundaram K, Gouma PI. Synthesis and examination of hexagonal tungsten oxide nanocrystals for electrochromic and sensing applications. NATO Science for Peace and Security Series C: Environmental Security; Sensors for Environment, Health and Security. 2009:77–91.

  17. Kukkola J, Mohl M, Leino AR, Maklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K. Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sens Actuat B. 2013;186:90–5.

    Article  CAS  Google Scholar 

  18. Zhang YD, He WW, Zhao HX, Li PJ. Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum. 2013;95:30–4.

    Article  CAS  Google Scholar 

  19. Chromčíková M, Liška M, Lissová M, Mošner P, Koudelka L. Structural relaxation of PbO–WO3–P2O5 glasses. J Therm Anal Calorim. 2013;114:947–54.

    Article  CAS  Google Scholar 

  20. Shen Y, Zhu H, Huang R, Zhao L, Yan SN. Synthesis and photochromic properties of WO3 powder induced by oxalic acid. Sci China Ser B. 2009;52:609–14.

    Article  CAS  Google Scholar 

  21. Cai GF, Zhou D, Xiong QQ, Zhang JH, Wang XL, Gu CD, Tu JP. Efficient electroctrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Solar Energy Mater Solar Cell. 2013;117:231–8.

    Article  CAS  Google Scholar 

  22. Hongjie L, Zhang L. An overview on synthetic methods of benzyl acetate. Eur Chem Bull. 2013;2:272–4.

    Google Scholar 

  23. Blovská V, Bělina P, Šulcová P. Synthesis of tungstate pigments of the formula MNd2W2O10 (M = Ni, Zn, Mn). J Therm Anal Calorim. 2013;113:83–9.

    Article  CAS  Google Scholar 

  24. Łącz A, Pasierb P. Synthesis and properties of BaCe1−x Y x O3−δ –BaWO4 composite protonic conductors. J Therm Anal Calorim. 2013;113:405–12.

    Article  CAS  Google Scholar 

  25. Biedunkiewicz A, Szymczyk A, Chrosciechowska J. Oxidation of (Ti, W)C ceramic powders. J Therm Anal Calorim. 2004;77:75–83.

    Article  CAS  Google Scholar 

  26. Kano S, Inoue T. Surface softening and hardening of WC–Co using pulsed laser irradiation. Surf Coat Tech. 2006;201:223–9.

    Article  CAS  Google Scholar 

  27. Kim HC, Shon IJ, Yoon JK, Doh JM. Consolidation of ultra fine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical properties. Int J Refract Metal Hard Mater. 2007;25:46–52.

    Article  CAS  Google Scholar 

  28. Moreno-Castilla C, Alvarez-Merino MA, Carrasco-Marín F, Fierro JLG. Tungsten and tungsten carbide supported on activated carbon: surface structures and performance for ethylene hydrogenation. Langmuir. 2001;17:1752–6.

    Article  CAS  Google Scholar 

  29. Szymańska-Kolasa A, Lewandowski M, Sayag C, Djéga-Mariadassou G. Comparions of molybdenum carbide for the hydrodesulfurization of dibenzithiophene. Catal Today. 2007;119:7–12.

    Article  CAS  Google Scholar 

  30. Szilágyi IM, Madarász J, Pokol G, Hange F, Szalontai G, Varga-Josepovits K, Tóth AL. The effect of K+ ion doping on the structure and thermal reduction of hexagonal ammonium tungsten bronze. J Therm Anal Calorim. 2009;97:11–8.

    Article  CAS  Google Scholar 

  31. Bartha L, Neugebauer J. Aspects of effective doping and the incorporation of dopant. Int J Refract Metal Hard Mater. 1995;13:1–34.

    Article  Google Scholar 

  32. Pink E, Bartha L. The metallurgy of doped/non-sag tunsgten. London: Elsevier; 1989.

    Google Scholar 

  33. van Put JW. Crystallisation and processing of ammonium paratungstate (APT). Int J Refract Metal Hard Mater. 1995;13:61–76.

    Article  Google Scholar 

  34. Bartha L, Kiss BA, Szalay T. Chemistry of tungsten oxide bronzes. Int J Refract Metal Hard Mater. 1995;13:77–91.

    Article  CAS  Google Scholar 

  35. Szilágyi IM, Santala E, Heikkilä M, Pore V, Kemell M, Teucher G, Firkala T, Färm E, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Photocatalytic properties of WO3/TiO2 core-shell nanofibers prepared by electrospinning and atomic layer deposition. Chem Vapor Dep. 2013;19:149–55.

    Article  CAS  Google Scholar 

  36. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungtate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105:73–81.

    Article  CAS  Google Scholar 

  37. Christian JB, Whittingham MS. Structural study of ammonium metatungstate. J Solid State Chem. 2008;181:1782–91.

    Article  CAS  Google Scholar 

  38. Fait MJG, Lunk HJ, Feist M, Schneider M, Dann JN, Frisk TA. Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta. 2008;469:12–22.

    Article  CAS  Google Scholar 

  39. Prasad RL, Kushwaha A, Szilágyi IM, Kótai L. Solid state thermal degradation behaviour of 1-D coordination polymers of Ni(II) and Cu(II) bridged by conjugated ligand. J Therm Anal Calorim. 2013;114:653–64.

    Article  CAS  Google Scholar 

  40. Szilágyi IM, Deák A, Várhelyi C Jr, Madarász J, Pokol G, Gömöry Á, Várhelyi C. Structural and thermal study of assymetric α-dioxime complexes of Co(III) with Cl and methyl-pyridines. Polyhedron. 2010;10:2185–9.

    Article  CAS  Google Scholar 

  41. Zhang HY, Xu L, Wang EB, Jiang M, Wu AG, Li Z. Photochromic behavior and luminescent properties of novel hybrid organic–inorganic film doped with Preyssler’s heteropoly acid H12[EuP5W30O110] and polyvinylpyrrolidone. Mater Lett. 2003;57:1417–22.

    Article  CAS  Google Scholar 

  42. Li Y, Li YG, Zhang ZM, Wu Q, Wang EB. A new polyoxotungstate-based W72V30 spherical cage. Inorg Chem Commun. 2009;12:864–7.

    Article  CAS  Google Scholar 

  43. Duplyakin VK, Baklanova ON, Chirkova OA, Antonicheva NV, Arbuzov AB, Voitenko NN, Drozdov VA, Likholobov VA. Interaction of nickel hydroxocarbonate, ammonium paramolybdate, and ammonium metatungstate under mechanical activation. Kin Catal. 2010;51:126–30.

    Article  CAS  Google Scholar 

  44. Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun. 2008;9:696–702.

    Article  CAS  Google Scholar 

  45. Sarish S, Devassy BM, Böhringer W, Feltcher J, Halligudi SB. Liquid-phase alkylation of phenol with long-chain olefins over WO /ZrO2 solid acid catalysts. J Mol Catal A. 2005;240:123–31.

    CAS  Google Scholar 

  46. Szilágyi IM, Pfeifer J, Balázsi C, Tóth AL, Varga-Josepovits K, Madarász J, Pokol G. Thermal stability of hexagonal tungsten trioxide. J Therm Anal Calorim. 2008;94:499–505.

    Article  CAS  Google Scholar 

  47. Madarász J, Szilágyi IM, Hange F, Pokol G. Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air. J Anal Appl Pyrol. 2004;72:197–201.

    Article  CAS  Google Scholar 

  48. Mansour SAA, Mohamed MA. Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochim Acta. 1988;129:187–96.

    Article  CAS  Google Scholar 

  49. French GJ, Sale FR. A re-investigation of the thermal decomposition of ammonium paratungstate. J Mater Sci. 1981;16:3427–36.

    Article  CAS  Google Scholar 

  50. Szilágyi IM, Madarász J, Hange F, Pokol G. On-line evolved gas analyses (EGA by TG-FTIR and TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition and partial reduction of ammonium paratungstate tetrahydrate. Solid State Ionics. 2004;172:583–6.

    Article  CAS  Google Scholar 

  51. Szilágyi IM, Madarász J, Hange F, Pokol G. Partial thermal reduction of ammonium paratungstate tetrahydrate. J Therm Anal Calorim. 2007;88:139–44.

    Article  CAS  Google Scholar 

  52. Szilágyi IM, Hange F, Madarász J, Pokol G. In situ HT-XRD study on the formation of hexagonal ammonium tungsten bronze by partial reduction of ammonium paratungstate tetrahydrate. Eur J Inorg Chem. 2006;17:3413–8.

    Article  CAS  Google Scholar 

  53. Szilágyi IM, Sakó I, Király P, Tárkányi G, Tóth AL, Szabó A, Varga-Josepovits K, Madarász J, Pokol G. Phase transformations of ammonium tungsten bronzes. J Therm Anal Calorim. 2009;98:707–16.

    Article  CAS  Google Scholar 

  54. Szilágyi IM, Madarász J, Király P, Tárkányi G, Tóth AL, Szabó A, Varga-Josepovits K, Pokol G. Stability and controlled composition of hexagonal WO3. Chem Mater. 2008;20:4116–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I. M. S. thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an OTKA-PD-109129 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Miklós Szilágyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunyadi, D., Sajó, I. & Szilágyi, I.M. Structure and thermal decomposition of ammonium metatungstate. J Therm Anal Calorim 116, 329–337 (2014). https://doi.org/10.1007/s10973-013-3586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3586-1

Keywords

Navigation