Skip to main content
Log in

Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(lactic acid)/halloysite nanotubes (PLA/HNTs) nanocomposites were prepared using melt compounding followed by compression molding. N,N′-ethylenebis(stearamide) (EBS) was used to improve the dispersion of HNTs and toughen the PLA nanocomposites. The thermal properties of PLA/HNTs nanocomposites were assessed by using differential scanning calorimeter and thermogravimetric analyzer (TG). The TG measurements were performed at both nitrogen and oxygen atmosphere. The mechanical properties of PLA/HNTs were characterized through tensile and impact tests. The morphological properties of the PLA/HNTs nanocomposites were investigated by using transmission electron microscopy and field emission scanning electron microscopy. The degree of crystallinity of PLA nanocomposites was increased slightly by the addition of EBS. The decomposition process of PLA/HNTs depends on the atmosphere reaction during TG test as well as the amount of EBS. The best mechanical properties of PLA/HNTs nanocomposites expressed by the impact strength and elongation at break were achieved by the addition of 5 mass% of EBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li M, Hu D, Wang Y, Shen C. Nonisothermal crystallization kinetics of poly (lactic acid) formulations comprising talc with poly (ethylene glycol). Polym Eng Sci. 2010;50:2298–305.

    Article  CAS  Google Scholar 

  2. Nakajima H, Takahashi M, Kimura Y. Induced crystallization of PLLA in the presence of 1, 3, 5-benzenetricarboxylamide derivatives as nucleators: preparation of haze-free crystalline PLLA materials. Macromol Mater Eng. 2010;295:460–8.

    CAS  Google Scholar 

  3. Bras AR, Viciosa MT, Dionisio M, Mano JF. Water effect in the thermal and molecular dynamics behavior of poly(L-lactic acid). J Therm Anal Calorim. 2007;88:425–9.

    Article  CAS  Google Scholar 

  4. Song P, Wei Z, Liang J, Chen G, Zhang W. Crystallization behavior and nucleation analysis of poly (l-lactic acid) with a multiamide nucleating agent. Polym Eng Sci. 2012;52:1058–68.

    Article  CAS  Google Scholar 

  5. Gámez-Pérez J, Velazquez-Infante J, Franco-Urquiza E, Pages P, Carrasco F, Santana O, Maspoch ML. Fracture behavior of quenched poly (lactic acid). Express Polym Lett. 2011;5:82–91.

    Article  Google Scholar 

  6. Pan P, Yang J, Shan G, Bao Y, Weng Z, Inoue Y. Nucleation effects of nucleobases on the crystallization kinetics of poly (l-lactide). Macromol Mater Eng. 2012;297:670–9.

    Article  CAS  Google Scholar 

  7. Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer. 2006;47:1340–7.

    Article  CAS  Google Scholar 

  8. Moon SI, Jin F, Lee C, Tsutsumi S, Hyon SH. Novel carbon nanotube/poly (l-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp. 2005;224:287–96.

    Article  CAS  Google Scholar 

  9. Zhao Y, Qiu Z, Yang W. Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly (l-lactide). Compos Sci Technol. 2009;69:627–32.

    Article  CAS  Google Scholar 

  10. Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organomontmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.

    Article  CAS  Google Scholar 

  11. Leu YY, Chow WS. Kinetics of water absorption and thermal properties of poly (lactic acid)/organomontmorillonite/poly (ethylene glycol) nanocomposites. J Vinyl Addit Technol. 2011;17:40–7.

    Article  CAS  Google Scholar 

  12. Picard E, Espuche E, Fulchiron R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci. 2011;53:58–65.

    Article  CAS  Google Scholar 

  13. Chow WS, Tham WL, Seow PC. Effects of maleated-PLA compatibilizer on the properties of poly (lactic acid)/halloysite clay composites. J Thermoplast Compos Mater. 2012;26:1349–63.

    Article  Google Scholar 

  14. Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59:574–82.

    CAS  Google Scholar 

  15. Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q. Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer. 2007;48:7374–84.

    Article  CAS  Google Scholar 

  16. Zhao M, Liu P. Halloysite nanotubes-polystyrene (HNTs/PS) nanocomposites via in situ bulk polymerization. J Therm Anal Calorim. 2008;94:103–7.

    Article  CAS  Google Scholar 

  17. Jia Z, Luo Y, Guo B, Yang B, Du M, Jia D. Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polym Plast Technol Eng. 2009;48:607–13.

    Article  CAS  Google Scholar 

  18. Zhou WY, Guo B, Liu M, Liao R, Rabie ABM, Jia D. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res A. 2010;93:1574–87.

    Google Scholar 

  19. Carli LN, Crespo JS, Mauler RS. PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Compos A. 2011;42:1601–8.

    Article  Google Scholar 

  20. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P. Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol. 2011;71:1859–66.

    Article  CAS  Google Scholar 

  21. Cavallaro G, De Lisi R, Lazzara G. Polyethylene glycol/clay nanotubes composites. J Therm Anal Calorim. 2013;112:383–9.

    Article  CAS  Google Scholar 

  22. Rybinski P, Janowska G. Thermal stability and flammability of nanocomposites made of diene rubbers and modified halloysite nanotubes. J Therm Anal Calorim. 2013;113:31–41.

    Article  CAS  Google Scholar 

  23. Tham WL, Mohd Ishak ZA, Chow WS. Mechanical and thermal properties enhancement of poly (lactic acid)/halloysite nanocomposites by maleic-anhydride functionalized rubber. J Macromol Sci B. 2014;53:371–82.

    Article  CAS  Google Scholar 

  24. Chow WS, Lim SR. Effects of N,N′-ethylenebis (stearamide) on the properties of poly (ethylene terephthalate)/organo-montmorillonite nanocomposite. Polym Plast Technol Eng. 2013;52:626–33.

    Article  CAS  Google Scholar 

  25. Zhang L, Yin H, Xiong Z, Xiong Y, Xu W. Flowability and mechanical and thermal properties of nylon 6/ethylene bis-stearamide/carboxylic silica composites. J Macromol Sci B. 2011;50:2255–70.

    Article  CAS  Google Scholar 

  26. Li TQ, Wolcott MP. Rheology of wood plastics melt, part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci. 2006;46:464–73.

    Article  CAS  Google Scholar 

  27. Yu ZF, Yang YY, Zhang LL, Ding YC, Chen XM, Xu KT. Study of short glass fiber-reinforced poly(3-hydroxybutyrate-co-4-hydroxybutyrate) composites. J Appl Polym Sci. 2012;126:822–9.

    Article  CAS  Google Scholar 

  28. Bettini SHP, Josefovich MPPM, Munoz PARM, Lotti C, Mattoso LHC. Effect of lubricant on mechanical and rheological properties of compatibilized PP/sawdust composites. Carbohydr Polym. 2013;94:800–6.

    Article  CAS  Google Scholar 

  29. Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–55.

    Article  CAS  Google Scholar 

  30. Rybinski P, Janowska G, Malgorzata J, Pajak A. Thermal stability and flammability of butadiene–styrene rubber nanocomposites. J Therm Anal Calorim. 2012;109:561–71.

    Article  CAS  Google Scholar 

  31. Leu YY, Mohd Ishak ZA, Chow WS. Mechanical, thermal, and morphological properties of injection molded poly (lactic acid)/SEBS‐g‐MAH/organo‐montmorillonite nanocomposites. J Appl Polym Sci. 2012;121:1200–7.

    Article  Google Scholar 

  32. Cai Y, Yan S, Yin J, Fan Y, Chen X. Crystallization behavior of biodegradable poly (L-lactic acid) filled with a powerful nucleating agent: N,N′-bis (benzoyl) suberic acid dihydrazide. J Appl Polym Sci. 2011;121:1408–16.

    Article  CAS  Google Scholar 

  33. Di YW, Iannace S, Maio ED, Nicolais L. Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Appl Polym Sci. 2005;43:689–98.

    Article  CAS  Google Scholar 

  34. Lim SR, Ariff ZM, Chow WS. Reprocessability of poly (ethylene terephthalate) nanocomposites: effects of maleic anhydride grafted styrene–ethylene/butylene–styrene and N,N′-ethylenebis (stearamide). J Thermoplast Compos Mater. 2013;. doi:10.1177/0892705712470257.

    Google Scholar 

  35. Sarasua JR, Prud’hommer RE, Wisniewski M, Borgne AL, Spassky N. Crystallization and melting behavior of polylatides. Macromolecular. 1998;31:3895–905.

    Article  CAS  Google Scholar 

  36. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules. 2011;12:2456–65.

    Article  CAS  Google Scholar 

  37. Zhou Q, Xanthos M. Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab. 2008;93:1450–9.

    Article  CAS  Google Scholar 

  38. Shi Y, Shao L, Yang J, Huang T, Wang Y, Zhang N, Wang Y. Highly improved crystallization behavior of poly (l-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym Adv Technol. 2013;24:42–50.

    Article  CAS  Google Scholar 

  39. Chow WS, Leu YY, Mohd Ishak ZA. Effects of SEBS-g-MAH on the properties of injection moulded poly(lactic acid)/nano-calcium carbonate composites. Express Polym Lett. 2012;6:503–10.

    Article  CAS  Google Scholar 

  40. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta. 2007;454:1–22.

    Article  Google Scholar 

  41. Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab. 2008;93:952–67.

    Article  CAS  Google Scholar 

  42. Bertini F, Canetti M, Audisio G, Costa G, Falqui L. Characterization and thermal degradation of polypropylene montmorillonite nanocomposites. Polym Degrad Stab. 2006;91:600–5.

    Article  CAS  Google Scholar 

  43. Khumalo VM, Karger-Kocsis J, Thomann R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. Express Polym Lett. 2010;4:264–74.

    Article  CAS  Google Scholar 

  44. Dominkovics Z, Hári J, Fekete E, Pukánszky B. Thermo-oxidative stability of polypropylene/layered silicate nanocomposites. Polym Degrad Stab. 2011;96:581–7.

    Article  CAS  Google Scholar 

  45. Ece OI, Schroeder PA. Clay mineralogy abd chemistry of halloysite and alunite deposits in the turplu area, balikesir, Turkey. Clays Clay Miner. 2007;55:18–36.

    Article  CAS  Google Scholar 

  46. Deng S, Zhang J, Ye L. Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol. 2009;69:2497–505.

    Article  CAS  Google Scholar 

  47. Jia Z, Luo Y, Guo B, Yang B, Du M, Jia D. Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polym Plast Technol Eng. 2009;48:607–13.

    Article  CAS  Google Scholar 

  48. Hatui G, Sahoo S, Das CK, Saxena AK, Basu T, Yue CY. Effect of nanosilica and polyphosphazene elastomer on the in situ fibrillation of liquid crystalline polymer (LCP) and thermo-mechanical properties of polybutylene terephthalate (PBT)/LCP blend system. Mater Des. 2012;42:184–91.

    Article  CAS  Google Scholar 

  49. Cerrutia P, Carfagnaa C, Rychly J, Matisova-Rychla L. Chemiluminescence from oxidation of polyamide 6,6. I. The oxidation of pure polyamide. Polym Degrad Stab. 2003;82:477–85.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Universiti Sains Malaysia Research University Grant (Grant Number 814070; Grant Number 814199), USM Incentive Grant (Grant Number 8021013), and Ministry of Higher Education Malaysia MyPHD Scholarship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shyang Chow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tham, W.L., Poh, B.T., Mohd Ishak, Z.A. et al. Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. J Therm Anal Calorim 118, 1639–1647 (2014). https://doi.org/10.1007/s10973-014-4062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4062-2

Keywords

Navigation