Skip to main content
Log in

Thermogravimetry on wood powder-filled polyurethane composites derived from lignin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel polyurethane (PU) composites whose matrix is derived from lignin, molasses polyol and filler from wood powder were successfully prepared. Two kinds of polyol were mixed 0/100 to 100/0 in seven steps, and filler content was varied from 50 to 100 mass % to polyol content. Decomposition behaviour of PU composites was investigated by thermogravimetry. Apparent density and mechanical properties of the above composites were also measured. Surface texture was observed by scanning electron microscopy. Thermal decomposition of PU composites was found to occur in two stages. The first decomposition observed at 570–580 K (DT d1, peak temperature of derivative curve) is attributed to the matrix of composites. The second stage decomposition depending on filler content, observed in a temperature range from 590 to 630 K (DT d2), is attributable to filler homogenously associated with PU matrix. Marked differences were not found, when the kinds of lignin and molasses polyol composition were varied. The above PU composites were found to be thermally stabilised by the introduction of filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Christensen R. Mechanics of composite materials. New York: Wiley; 1979. p. 1.

    Google Scholar 

  2. Gauthier R, Joly C, Coupas AC, Gauthier H, Escoubes M. Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos. 1998;19:287–300.

    Article  CAS  Google Scholar 

  3. Ishak M, Aminullah ZA, Ismai AH, Rozman D. Effect of silane coupling agents and acrylic acid based compatibilizers on mechanical properties of oil palm empty fruit bunch filled high-density polyethylene composites. J Appl Polym Sci. 1998;68:2189–203.

    Article  Google Scholar 

  4. Tjong SC, Xu SA, Li R, Kwok Y, Mai YW. Preparation and performance characteristics of short-glass-fiber/maleated styrene-ethylene-butylene-styrene/polypropylene hybrid composites. J Appl Polym Sci. 2002;86:1303–11.

    Article  CAS  Google Scholar 

  5. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos A. 2003;34:253–66.

    Article  Google Scholar 

  6. Nunez AJ, Strum PC, Kenny JM. Mechanical characterization of polypropylene-wood flour composites. J Appl Polym Sci. 2003;88:1420–8.

    Article  CAS  Google Scholar 

  7. Le Digabel F, Boquillon N, Dole P, Monties B, Averous L. Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers. J Appl Polym Sci. 2004;93:428–36.

    Article  Google Scholar 

  8. Kim H-S, Yang H-S, Kim H-J, Park H-J. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Cal. 2004;76:395–404.

    Article  CAS  Google Scholar 

  9. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Comp Struct. 2004;63:305–12.

    Article  Google Scholar 

  10. Salemane MG, Luyt AS. Thermal and mechanical properties of polypropylene–wood powder composites. J Appl Polym Sci. 2006;100:4173–80.

    Article  CAS  Google Scholar 

  11. Dányádi L, Renner K, Móczó J, Pukánszky B. Wood flour filled polypropylene composites: interfacial adhesion and micromechanical deformations. Polym Eng Sci. 2007;47:1246–55.

    Article  Google Scholar 

  12. Liu WJ, Thayer K, Misra M, Drzal LT, Mohanty AK. Processing and physical properties of native grass reinforced biocomposites. Polym Eng Sci. 2007;47:969–76.

    Article  CAS  Google Scholar 

  13. Luz SM, DelTio J, Rocha GJM, Gonçalves AR, Del’Arco Jr AP. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos A 2008;39:1362–1369.

  14. Spoljaric S, Genovese A, Shanks RA. Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Compos Appl Sci Manuf. 2009;40:791–9.

    Article  Google Scholar 

  15. Zhang YC, Toghiani H, Zhang JL, Xue YB, Pittman CU. Studies of surface-modified wood flour/polypropylene composites. J Mater Sci. 2009;44:2143–51.

    Article  CAS  Google Scholar 

  16. Hatakeyama T, Kitano T, Klasson C. DSC studies on fibre filled polyethylene. J Inter Polym Process. 1988;3:230–3.

    Article  CAS  Google Scholar 

  17. Tan JK, Kitano T, Hatakeyama T. Crystallization of carbon fibre reinforced polypropylene. J Mater Sci. 1990;25:3380–4.

    Article  CAS  Google Scholar 

  18. Bratwidjaja AS, Gitopadmoyo I, Watanabe Y, Hatakeyama T. Adhesive properties of polypropylene modified with maleic anhydride by extrusion molding. J Appl Polym Sci. 1989;37:1141–5.

    Article  Google Scholar 

  19. Hatakeyama H, Tanamachi N, Matsumura H, Hirose S, Hatakeyama T. Biobased polyurethane composite foams with inorganic fillers studied by thermogravimetry. Thermmochim Acta. 2005;431:55–160.

    Google Scholar 

  20. Hatakeyama H, Nakayachi A, Hatakeyama T. Thermal and mechanical properties of polyurethane-based geocomposites derived from lignin and molasses. Comp Part A. 2005;36:698–704.

    Article  Google Scholar 

  21. Hatakeyama H, Nanbo T, Hatakeyama T. Thermal and mechanical analysis of lignocellulose-based biocomposites. In: Hu TQ, editor. Characterization of lingnocellulosic materials. Oxford: Blackwell; 2008. p. 275–87.

    Chapter  Google Scholar 

  22. Hatakeyama H, Kato N, Nanbo T, Hatakeyama T. Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J. Mater Sci. 2012;47:7254–61.

    Article  CAS  Google Scholar 

  23. Tay G, Nanbo T, Hatakeyama H, Hatakeyama T. Polyurethane composites derived from glycerol and molasses polyols filled with oil palm empty fruit bunches studied by TG and DMA. Thermochim Acta. 2011;525:190–6.

    Article  CAS  Google Scholar 

  24. Hatakeyama H, Hatakeyama T. Advances of polyurethane foams derived from lignin. J Renew Mater. 2013;1:113–23.

    CAS  Google Scholar 

  25. Hatakeyama H, Marusawa T, Hatakeyama T. Soft type polyurethane derived from molasses. J. Mater Sci. 2011;465:7475–81.

    Article  Google Scholar 

  26. Ma F, Hanna MA. Biodiesel production: a review. Bioresour Tech. 1999;70:1–15.

    Article  CAS  Google Scholar 

  27. Rozman HD, Tay G, Abubakar A. Oil palm empty fruit bunch-polyurethane composites: the effect of isocyanate/glycol ratio, glycol type and glycol mixture on impact strength, dimensional stability and thermal properties. Polym Plast Technol Eng. 2003;42:811–26.

    Article  CAS  Google Scholar 

  28. Sarkanen KV, Ludwig CH, editors. Lignins, occurrence, formation, structure and reactions. New York: Wiley; 1971. p. 846–58.

    Google Scholar 

  29. Berry BC, Viswanathan T. Linosulfonic acid-doped polyaniline (LIGNO-PANI™)—a versatile conducting polymer. In: Hu TQ, editor. Chemical modification, and usage of lignin. New York: Kluwer Academic Publishers; 2002. p. 21–40.

    Chapter  Google Scholar 

  30. Northey RA. The use of lignosulfonates as water reducing agents in the manufacture of gypsum wallboard. In: Hu TQ, editor. Chemical modification, and usage of lignin. New York: Kluwer Academic Publishers; 2002. p. 139–50.

    Chapter  Google Scholar 

  31. Lebo SE, Braten SM, Fredheim GE, Lutnaes BF, Lauten RA, Myrvold BO, McNally TJ. Recent advances in the characterization of lignosulfonates. In: Hu TQ, editor. Chemical modification, and usage of lignin. New York: Kluwer Academic Publishers; 2002. p. 189–205.

    Google Scholar 

  32. Neumann K. Creating value from wood—a working biorefinery. In: International Symposium on Woods, Fibre and Pulping Chemistry (ISWFPC), 0039. Oslo; June 15–18, 2009.

  33. Szycher M. Szcher’s handbook of polyurethanes. Boca Raton: CRC Press; 1999. p. 8.7–8.8.

  34. Hatakeyama H, Hatakeyama T. Lignin structure, properties and applications. Adv Polym Sci. 2010;232:1–63.

    Article  CAS  Google Scholar 

  35. Hatakeyama T, Hatakeyama H. Thermal properties of green polymers and biocomposites. Dordrecht: Kluwer Academic Publishers; 2004.

    Google Scholar 

  36. Hirose S, Hatakeyama H, Nakamura K. Preparation method of polyurethanes containing lignin (Patent title: translated from Japanese), JP-1791797; 1993.

  37. Hirose S, Yano S, Hatakeyama H. Preparation method of flame-resistant polyurethanes containing lignin (Patent title: translated from Japanese), JP-1813561; 1994.

  38. Hatakeyama H, Hirose S, Nakamura K, Kobashigawa K, Preparation method of biodegradable polyurethane composites (Patent title: translated from Japanese), JP-2613834; 1997.

  39. Hatakeyama H, Hirose S. Preparation method of biodegradable polyurethanes (Patent title: translated from Japanese), JP-266390; 1997.

  40. Hatakeyama H, Hirose S, Kobashigawa K, Tokashiki T. Dehydration method of polyols containing molasses and practically water-free polyols (Patent title: translated from Japanese), JP-2836004; 1998.

  41. Hatakeyama H, Hirsoe S. Kobashigawa K, Tokashiki T. Components of polyols for preparation of biodegradable flexible polyurethanes and the preparation method of polyurethane foams utilized the above components (Patent title: translated from Japanese), JP-2883271; 1999.

  42. Hatakeyama H, Hirose S. Biodegradable polyurethane composites and their preparation methods (Patent title: translated from Japanese), JP-3095144; 2000.

  43. Hirose S, Hatakeyama H, Nakamura K. Novel polyurethanes and their preparation methods (Patent title: translated from Japanese), JP-3101701; 2000.

  44. Hatakeyama H, Hirose S. Rigid polyurethane foams and their preparation methods (Patent title: translated from Japanese), JP-3341115; 2002.

  45. Hatakeyama H, Hirose S. Biodegradable materials for pipe cleaning (Patent title: translated from Japanese), JP-3341116; 2002.

  46. Hatakeyama H, Hirose S, Funabashi M. Biodegradable elastomer sheets (Patent title: translated from Japanese), JP-3567286; 2004.

  47. Hirose S, Hatakeyama H. Lignin-polyurethanes and their preparation methods (Patent title: translated from Japanese), JP-4019346; 2007.

  48. Momota M, Ozawa T, Kanetsuna H. Thermal analysis of polymer samples y round robin method Part V. Thermogravimetry. Thermochim Acta. 1990;159:125–37.

    Article  CAS  Google Scholar 

  49. Funabashi M, Hirose S, Hatakeyama T, Hatakeyama H. Effect of filler shape on mechanical properties of rigid polyurethane composites containing plant particles. Macromol Symp. 2003;197:231–41.

    Article  CAS  Google Scholar 

  50. Hatakeyama H, Tsujimoto Y, Zarubin M Ja, Krutov SM, Hatakeyama T. Thermal decomposition and glass transition of industrial hydrolysis lignin. J Therm Anal Cal. 2010;101:289–95.

    Article  CAS  Google Scholar 

  51. Hatakeyama T, Matsumoto Y, Asano Y, Hatakeyama H. Glass transition of rigid polyurethane foams derived from sodium lignosulfonate mixed with diethylene, triethylene and polyethylene glycols. Thermochem Acta. 2004;416:29–33.

    Article  CAS  Google Scholar 

  52. Hatakeyama H, Kosugi R, Hatakeyama T. Thermal properties of lignin- and molasses-based polyurethane foams. J Therm Anal Cal. 2008;92:419–24.

    Article  CAS  Google Scholar 

  53. Hirata T. Determination of kinetic parameter for pyrolysis of cellulose in vacuo by viscometry and gravimetry. Mokuzai Gakkaishi. 1976;22:238–45.

    CAS  Google Scholar 

  54. Hirose S, Kobashigawa K, Hatakeyama H. Thermal degradation of polyurethanes containing lignin studied by TG-FTIR. Polym Inter. 1998;47:247–56.

    Article  CAS  Google Scholar 

  55. Nakamura K, Nishimura Y, Zetterlund P, Hatakeyama T, Hatakeyama H. TG-FTIR studies on biodegradable polyurethanes containing mono- and disaccharides components. Thermochim Acta. 1996;282(283):433–41.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Clive S. Langham, Nihon University, for his helpful advice. The authors also wish to thank Mr. T. Marusawa for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hatakeyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatakeyama, H., Ohsuga, T. & Hatakeyama, T. Thermogravimetry on wood powder-filled polyurethane composites derived from lignin. J Therm Anal Calorim 118, 23–30 (2014). https://doi.org/10.1007/s10973-014-3959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3959-0

Keywords

Navigation