Skip to main content

Lignosulfonic Acid-Doped Polyaniline (Ligno-PaniTM) — A Versatile Conducting Polymer

  • Chapter
Chemical Modification, Properties, and Usage of Lignin

Abstract

The use of renewable natural resources to develop or improve existing technologies is an important area of research to the scientific community. The availability and functionality of these resources very often make it possible to reduce the cost and improve the properties of existing products. One such natural resource that has received a great deal of attention over the years is lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Gargulak and S.E. Lebo, in: Lignin: Historical, Biological, and Materials Perspectives, edited by W. G. Glasser, R. A. Northey, and T. P. Schultz (ACS Symposium Series 742, ACS, Washington, 1999), pp. 304–320.

    Chapter  Google Scholar 

  2. H. H. Kuhn and A. D. Child, in: Handbook of Conducting Polymers, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds (Marcel Dekker Inc., New York, 1998), pp. 993–1013.

    Google Scholar 

  3. M. Sudhakar, P. W. Stoecker, and T. Viswanathan, in: Recent Research Developments in Polymer Science Vol. 2 Part II, edited by S. G. Pandali (Transworld Research Network, Trivandrum, India 1998), pp. 173–181.

    Google Scholar 

  4. M. Angelopoulos, N. Patel, and J. M. Shaw, Water-soluble polyanilines: properties and applications, Mat. Res. Soc. Symp. Proc. 328, 173–178 (1994).

    Article  CAS  Google Scholar 

  5. M. Angelopoulos, N. Patel, T. N. Seeger, and J. Gerome, US Patent 5,370,825 (1994).

    Google Scholar 

  6. L. Sun and S. C. Yang, Solution processable conducting polymer: polyaniline-polyelectrolyte complexes Mat. Res. Soc. Symp Proc. 328, 209–214 (1994).

    Article  CAS  Google Scholar 

  7. S. Yang, W.M. Chen, and K.S. You, The properties of polyaniline-polyelectrolyte complexes, Synth. Met. 84, 77–78 (1997).

    Article  CAS  Google Scholar 

  8. T. Viswanathan, US Patent 6,059,999 (2000).

    Google Scholar 

  9. M. Sudhakar, A. D. Toland, and T. Viswanathan, in: Semiconducting Polymers, edited by B. R. Hsieh and Y. Wei (ACS, Washington, 1999), pp. 76–87.

    Chapter  Google Scholar 

  10. D. W. DeBeny, Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating, J. Electrochem. Soc. 132(5), 1022–1026 (1985).

    Article  Google Scholar 

  11. W. R. Carmody, An easily prepared wide range buffer series, J. Chem. Educ. 38(11), 559–560 (1961).

    Article  CAS  Google Scholar 

  12. B. C. Berry, A. U. Shaikh, and T. Viswanathan, pH Dependent electrochemical studies of water-dispersible lignosulfonic acid-doped polyaniline, ACS Polymer Preprints 41, 327–328 (2000).

    CAS  Google Scholar 

  13. D. C. Trivedi, in: Conductive Polymers: Synthesis and Electrical Properties, edited by H. S. Nalwa (John Wiley & Sons Ltd., 1997), pp. 520–535.

    Google Scholar 

  14. W.-K. Lu, S. Basak, and R. L. Elsenbaumer, in: Handbook of Conducting Polymers, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds (Marcel Dekker Inc., New York, 1998) pp. 881–920.

    Google Scholar 

  15. T. R. Hawkins and S. R. Geer, US Patent 5,976,419 (1999).

    Google Scholar 

  16. B. Z. Tang, J. W. Y. Lam, and B. Li, Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films, Chem. Mater. 11, 1581–1589 (1999).

    Article  CAS  Google Scholar 

  17. M. Wan and J. Li, Synthesis and electrical-magnetic properties of polyaniline composites, J. Polym. Sci. Part A. 36, 2799–2805 (1998).

    Article  CAS  Google Scholar 

  18. J. H. Fan, M. X. Wan, and D. B. Zhu, Electrical and magnetic properties of water-soluble conducting polyaniline derivatives, Solid State Commun. 110, 57–62 (1999).

    Article  CAS  Google Scholar 

  19. B. Z. Tang and H. Xu, Preparation, alignment, and optical properties of soluble poly(phenylacetylene)wrapped carbon nanotubes, Macromolecules 32, 2569–2576 (1999)

    Article  CAS  Google Scholar 

  20. W. S. Briggs and N. J. Kjargaard, US Patent 4,019,995 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berry, B.C., Viswanathan, T. (2002). Lignosulfonic Acid-Doped Polyaniline (Ligno-PaniTM) — A Versatile Conducting Polymer. In: Hu, T.Q. (eds) Chemical Modification, Properties, and Usage of Lignin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0643-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0643-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5173-3

  • Online ISBN: 978-1-4615-0643-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics