Skip to main content
Log in

Estimation of enzymatic, microbial, and chemical properties in Brown soil by microcalorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The study was conducted with the objective to assess soil enzymatic, microbial, and chemical properties by customary methods and results obtained by conventional methods, corroborated with microcalorimetry. The experiment was laid out in a randomized complete block design with ten treatments in triplicates. The RS and GM were used at three rates (0, 5, and 25 mg g−1 soil, respectively). The soils were maintained at two water levels 25 % (W1) and 200 % (W2) of soil water-holding capacity. All soil enzymatic, microbial, and chemical properties were measured by standard methods. The incorporation of GM and RS, especially at high rates and water levels, 25 % (W1) and 200 % (W2) significantly (p < 0.05) affected the soil enzymatic, microbial, and chemical properties compared to controls. The microcalorimetric parameters P max and k were positively correlated, whereas t max negatively linked with the results of enzymatic, microbial, and chemical properties at p < 0.01. Conversely, Q elucidated non-significant correlation (p < 0.05) to urease (0.248), neutral phosphatase (0.281), dehydrogenase (0.291), MBC (0.283), MBP (0.277), DOC (0.269), DON (0.190), SOM (0.284), and pH (0.047). Our results suggested that calorimetric parameters P max, t max, and k are highly sensitive and could be used as indices of soil enzymatic, microbial, and chemical properties, while Q is an indigent indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MBC:

Microbial biomass carbon

MBN:

Microbial biomass nitrogen

MBP:

Microbial biomass Phosphorous

DOC:

Dissolved organic carbon

DON:

Dissolved organic nitrogen

SOM:

Soil organic matter

OM:

Organic matter

CFU:

Colony-forming unit

RS:

Rice straw

GM:

Green manure

RCBD:

Randomized complete block design

WHC:

Water-holding capacity

rpm:

Revolutions per minute

TOC:

Total organic carbon

References

  1. Shi W. Agricultural and ecological significance of soil enzymes: soil carbon sequestration and nutrient cycling. In: Shukla G, Varma A, editors. Soil enzymology, Soil Biology, Vol. 22. Berlin: Springer-Verlag; 2011. p. 43.

    Google Scholar 

  2. Finzi AC, Sinsabaugh RL, Long TM, Osgood MP. Microbial community responses to atmospheric CO2 enrichment in a Pinus taeda forest. Ecosystems. 2006;9:215–26.

    Article  CAS  Google Scholar 

  3. Colombo C, Palumbo G, Sannino F, Gianfreda L. Chemical and biochemical indicators of managed agricultural soils. In: 17th World congress of soil science, Bangkok, Thailand, 1740-2, 2002; pp. 1–9.

  4. Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Causack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Wallenstein MD, Zak DR, Zeglin LH. Stoichiometry of soil enzyme activity at global scale. Ecol Lett. 2008;11:1252–64.

    Google Scholar 

  5. Trasar-Cepeda C, Leirós MC, Seoane S, Gil-Sotres F. Limitation of soil enzymes as indicators of soil pollution. Soil Biol Biochem. 2000;32:1867–75.

    Article  CAS  Google Scholar 

  6. Bünemann EK, Schwenke GD, Van Zwieten L. Impact of agricultural inputs on soil organisms-a review. Aust J Soil Res. 2006;44:379–406.

    Article  Google Scholar 

  7. Li J, Zhao B, Li X, Jiang R, So HB. Effects of long-term combined application of organic and mineral fertilizer on microbial biomass, soil enzyme activities and soil fertility. Agr Sci China. 2008;7:336–43.

    Article  Google Scholar 

  8. Solaiman ZM. Measurement of microbial biomass and activity in soil. In: Varma A, Oelmueller R, editors. Advanced techniques in soil microbiology. Berlin: Springer-Verlag; 2007. pp. 202–11.

    Google Scholar 

  9. Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.

    Article  Google Scholar 

  10. Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere. 2009;74:1292–300.

    Article  CAS  Google Scholar 

  11. Cao GL, Zhang XY, Wang YQ, Zheng FC. Estimation of emissions from field burning of crop straw in China. Chin Sci Bull. 2008;53:784–90.

    Article  CAS  Google Scholar 

  12. Tu C, Ristaino JB, Hu S. Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and surface mulching. Soil Biol Biochem. 2006;38:247–55.

    Article  CAS  Google Scholar 

  13. Xiao D. Alfisols and closely related soils. Chinese geographical science. Science Press, Beijing, China. Vol 2, Issue 1. 1992; p. 18–29.

  14. Xiao D. Some biogeochemical characteristics of Northeast China temperate forest landscape, forests and soil. Beijing: Science Press; 1978 (In Chinese).

    Google Scholar 

  15. Van Bodegom P, Broekman R, Dijk J, Bakker C, Aerts R. Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochemistry. 2005;76:69–83.

    Article  CAS  Google Scholar 

  16. Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl Soil Ecol. 2011;48:38–44.

    Article  Google Scholar 

  17. Poll C, Ingwersen J, Stemmer M, Gerzabek MH, Kandeler E. Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere. Euro J Soil Sci. 2006;57:583–95.

    Article  Google Scholar 

  18. Prado AGS, Airoldi C. Effect of the pesticide 2,4-D on microbial activity of the soil monitored by microcalorimetry. Thermochim Acta. 2000;349:17–22.

    Article  CAS  Google Scholar 

  19. Núñez-Regueira L, Rodríguez-Añón JA, Proupín-Castiñeras J, NúñezFernàndez O. Microcalorimetric study of changes in the microbial activity in a humic Cambisol alter reforestation with eucalyptus in Galicia (NW Spain). Soil Biol Biochem. 2006;38:115–24.

    Article  Google Scholar 

  20. Ahamadou B, Huang Q, Chen W, Wen S, Zhang J, Mohamed I, Cai P, Liang W. Microcalorimetric assessment of microbial activity in long-term fertilization experimental soils of Southern China. FEMS Microbiol Ecol. 2009;70:186–95.

    Article  CAS  Google Scholar 

  21. Barros N, Salgado J, Feijoo S. Calorimetry and soil. Thermochim Acta. 2007;458:11–7.

    Article  CAS  Google Scholar 

  22. Elliott ET, Burke IC, Monz CA, Frey SD, Paustian KH, Collins HP, Paul EA, Cole CA, Blevins RL, Frye WW, Lyon DW, Halvorson AD, Huggins, Turco RF, Hickman MV. Terrestrial carbon pools. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA, editors. Preliminary data from the Corn Belt and Great Plains regions. Defining soil quality for a sustainable environment. Madison: American Society of Agronomy; 1994. p. 179–91.

    Google Scholar 

  23. Hassan W, Akmal M, Muhammad I, Younas M, Zahaid KR, Ali F. Response of soil microbial biomass and enzymes activity to cadmium (Cd) toxicity under different soil textures and incubation times. Aust J Crop Sci. 2013;7:674–80.

    CAS  Google Scholar 

  24. Hassan W, Chen W, Huang Q, Mohamed I. Microcalorimetric evaluation of soil microbiological properties under plant residues and dogmatic water gradients in Red soil. Soil Sci Plant Nut. 2013;. doi:10.1080/00380768.2013.845735.

    Google Scholar 

  25. Nelson SD, LE Sommers. Total carbon, organic carbon, and organic matter. In: Page AL, et al., editors. Methods of soil analysis, part 2. Agron Monogr No 9. Madison: ASA-SSSA; 1982. pp. 539–79.

    Google Scholar 

  26. Blake GR, Hartge KH. Bulk density. In: Klute A, editor. Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. Madison Wisc: American Society of Agronomy; 1986. p. 363–75.

    Google Scholar 

  27. Gregorich EG, Beare MH, Stoklas U, St-Georges P. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma. 2003;113:237–52.

    Article  CAS  Google Scholar 

  28. Sparling G, Vojvodic-Vukovic M, Schipper LA. Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem. 1998;30:1469–72.

    Article  CAS  Google Scholar 

  29. Hassan W, Chen W, Cai P, Huang Q. Oxidative enzymes, the ultimate regulator: implications for factors affecting their efficiency. J Environ Qual. 2013;42:1–12.

    Article  Google Scholar 

  30. Hassan W. C and N mineralization and dissolved organic matter potentials of two contrasting plant residues: effects of residue type, moisture and temperature. Acta Agr Scand B-S P. 2013;. doi:10.1080/09064710.2013.846398.

    Google Scholar 

  31. Hassan W, David J. Effect of lead pollution on soil microbiological index under spinach (Spinacia oleracea L.) cultivation. J Soil Sediments. 2013;. doi:10.1007/s11368-013-0802-3.

    Google Scholar 

  32. Hassan W, David J, Abbas F. Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: implications for indirect influence of temperature and moisture. Catena. 2013;. doi:10.1016/j.catena.2013.11.001.

    Google Scholar 

  33. Goering HK, van-Soest PJ. Forage fiber analyses (apparatus, reagents, procedures and some applications). In: Agricultural hand book. USDA-ARS, Washington, 1970; p. 379.

  34. Guan SY, Zhang DS, Zhang ZM. Methods of soil enzyme activities analysis. Beijing: Agriculture Press; 1991. p. 263–71.

    Google Scholar 

  35. Tabatabai MA, Bremner JM. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1969;1:301–7.

    Article  CAS  Google Scholar 

  36. Öhlinger R. Biomass-P by fumigation-extraction technique. In: Schinner F, Ohlinger R, Kandeler E, Margesin R, editors. Methods in soil biology. Berlin: Springer; 1996. p. 62–4.

    Google Scholar 

  37. Wu J, Joergensen RG, Pommerening B, Haussod R, Brookes PC. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem. 1990;22:1167–9.

    Article  CAS  Google Scholar 

  38. Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.

    Article  CAS  Google Scholar 

  39. Xu GH, Zheng HY. Analytical handbook of soil microbes. Beijing: China Agriculture Press; 1986. p. 91–109.

    Google Scholar 

  40. Shi W, Dell E, Bowman D, Iyyemperumal K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil. 2006;288:285–96.

    Article  CAS  Google Scholar 

  41. Cabrera ML, Beare M. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J. 1993;57:1007–12.

    Article  CAS  Google Scholar 

  42. Houba VJG, Novozamsky I, Temminghoff E. Soil and Plant Analysis, Part 5A. Soil Analysis Procedures Extraction with 0.01 M CaCl2. Wageningen Agricultural University, Wageningen. 1994.

  43. Barros N, Feijoo S, Fernandez S, Simoni JA, Airoldi C. Application of the metabolic enthalpy change in studies of soil microbial activity. Thermochim Acta. 2000;356:1–7.

    Article  CAS  Google Scholar 

  44. Wadsö I. Characterization of microbial activity in soil by use of isothermal microcalorimetry. J Therm Anal Calorim. 2009;95:843–50.

    Article  Google Scholar 

  45. Prado AGS, Airoldi C. Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical Brazilian red Latosol soil. Thermochim Acta. 2001;371:169–74.

    Article  CAS  Google Scholar 

  46. Critter SAM, Airoldi C. Application of calorimetry to microbial biodegradation studies of agrochemicals in oxisols. J Environ Qual. 2001;30:954–9.

    Article  CAS  Google Scholar 

  47. Wang F, Yao J, Chen H, Zhou Y, Chen Y, Chen H, Gai N, Zhuang R, Tian L, Maskow T, Ceccanti B, Trebse P, Zaray G. Microcalorimetric measurements of the microbial activities of single- and mixed-species with trivalent iron in soil. Ecotoxicol Environ Saf. 2009;72:128–35.

    Article  CAS  Google Scholar 

  48. Boling EA, Blanchard GC, Russell WJ. Bacterial identification by microcalorimetry. Nature. 1973;241:472–3.

    Article  CAS  Google Scholar 

  49. Cenciani K, Freitas SS, Auxiliadora S, Critter M, Airoldi C. Enzymatic activity measured by microcalorimetry in soil amended with organic residues. R Bras Ci Solo. 2011;35:1167–75.

    CAS  Google Scholar 

  50. Zhuang RS, Chen HL, Yao J, Li Z, Burnet JE, Choi MMF. Impact of β-cypermethrin on soil microbial community associated with its bioavailability: a combined study by isothermal microcalorimetry and enzyme assay techniques. J Hazard Mater. 2011;189:323–8.

    Article  CAS  Google Scholar 

  51. Debord J, Verneuil B, Bollinger JC, Merle L, Dantoine T. Flow microcalorimetric study of butyrylcholinesterase kinetics and inhibition. Anal Biochem. 2006;354:299–304.

    Article  CAS  Google Scholar 

  52. Ge Y, Zhang JB, Zhang L, Yang M, He JZ. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in Northern China. J Soils Sediments. 2008;8:43–50.

    Article  CAS  Google Scholar 

  53. Barros N, Airoldi C, Simoni JA, Ramajo B, Espina A, Garcia JR. Calorimetric determination of the effect of ammonium-iron(III) phosphate monohydrate on Rhodic Eutrudox Brazilian soil. Thermochim Acta. 2006;44:89–95.

    Article  Google Scholar 

  54. Ye B, Feng H, Zhao J, Fang J, Shen W. Microcalorimetry study on the microbial activity of permafrost on the Tibetan plateau of China. J Therm Anal Calorim. 2013;111:1731–6.

    Article  CAS  Google Scholar 

  55. Wang F, Yao J, Chen H, Chen K, Trebše P, Zaray G. Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere. 2010;78:319–26.

    Article  CAS  Google Scholar 

  56. Critter SAM, Freitas SS, Airoldi C. Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochim Acta. 2002;394:133–44.

    Article  CAS  Google Scholar 

  57. Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol Biochem. 2005;37:1726–37.

    Article  CAS  Google Scholar 

  58. Núñez-Regueira L, Núñez-Fernández O, Rodríguez Añón JA, Castiñeiras JP. The influence of some physicochemical parameters on the microbial growth in soils. Thermochim Acta. 2002;394:123–31.

    Article  Google Scholar 

  59. Wang F, Yao J, Tian L, Zhou Y, Chen H, Chen H, Gai N, Chen Y, Zhuang R, Zaray G, Maskow T, Bramanti E. Microcalorimetric investigation of the toxic action of ammonium ferric(III) sulfate on the metabolic activity of pure microbes. Environ Toxicol Pharmacol. 2008;25:351–7.

    Article  CAS  Google Scholar 

  60. Zheng SJ, Zhao B, Yu Z. Influence of agricultural practices on soil microbial activity measured by microcalorimetry. Euro J Soil Biol. 2007;43:151–7.

    Article  CAS  Google Scholar 

  61. Zheng S, Hu J, Chen K, Yao J, Yu Z, Lin X. Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biol Biochem. 2009;41:2094–9.

    Article  CAS  Google Scholar 

  62. Plante AF, Fernández JM, Leifeld J. Application of thermal analysis techniques in soil science. Geoderma. 2009;153:1–10.

    Article  CAS  Google Scholar 

  63. Liang Y, Nikolic M, Peng Y, Chen W, Jiang Y. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem. 2005;37:1185–95.

    Article  CAS  Google Scholar 

  64. Wu WX, Ye Q-F, Min H, Duan X-J, Jin W-M. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem. 2004;36:289–95.

    Article  CAS  Google Scholar 

  65. Chirinda N, Olesen JE, Porter JR. Effect of organic matter input on soil microbial properties and crop yields in conventional and organic cropping systems. 16th IFOAM Organic World Congress, Modena, Italy, June 16–20, 2008 (Archived at http://orgprints.org/view/projects/conference.html).

  66. Biederbeck VO, Zentner RP, Campbell CA. Soil microbial populations and activities as influenced by legume green fallow in a semiarid climate. Soil Biol Biochem. 2005;37:1775–84.

    Article  CAS  Google Scholar 

  67. Bronick CJ, Lal R. Soil structure and management: a review. Geoderma. 2005;124:3–22.

    Article  CAS  Google Scholar 

  68. Kushwaha CP, Tripathi SK, Singh KP. Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem. Soil Tillage Res. 2000;56:153–66.

    Article  Google Scholar 

  69. Tate KR, Ross DJ, Feltham CW. A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol Biochem. 1988;20:329–35.

    Article  CAS  Google Scholar 

  70. Vineela C, Wani SP, Srinivasarao C, Padmaja B, Vittal KPR. Microbial properties of soils as affected by cropping and nutrient management practices in several long-term manurial experiments in the semi-arid tropics of India. Appl Soil Ecol. 2008;40:165–73.

    Article  Google Scholar 

  71. Bending GD, Turner MK, Rayns F, Marx M-C, Wood M. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem. 2004;36:1785–92.

    Article  CAS  Google Scholar 

  72. Freeman C, Ostle N, Kang H. An enzymic ‘latch’ on a global carbon store - a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature. 2001;409:149.

    Article  CAS  Google Scholar 

  73. Shah Z, Shah SH, Peoples M, Schwenke GD, Herridge DF. Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Res. 2003;83:1–11.

    Article  Google Scholar 

  74. Feyen L, Danker R. Impact of global warming on streamflow drought in Europe. J Geophys Res Atmos. 2009;114.

  75. Franchini JC, Gonzalez-Vila FJ, Cabrera F, Miyazawa M, Pavan MA. Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid oxisol. Plant Soil. 2001;231:55–63.

    Article  CAS  Google Scholar 

  76. Soumare M, Tack F, Verloo M. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresour Technol. 2003;86:15–20.

    Article  CAS  Google Scholar 

  77. Courtney RG, Mullen GJ. Soil quality and barley growth as influenced by the land application of two compost types. Bioresour Technol. 2008;99:2913–8.

    Article  CAS  Google Scholar 

  78. Niklasch H, Joergensen RG. Decomposition of peat, biogenic municipal waste compost, and shrub/grass compost added in different rates to a silt loam. J Plant Nutr Soil Sci. 2001;164:365–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (“863″Program) (2012AA101402) and the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoyun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, W., Chen, W., Cai, P. et al. Estimation of enzymatic, microbial, and chemical properties in Brown soil by microcalorimetry. J Therm Anal Calorim 116, 969–988 (2014). https://doi.org/10.1007/s10973-013-3588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3588-z

Keywords

Navigation