Skip to main content
Log in

Phase transformations of ammonium tungsten bronzes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article discusses the formation and structure of ammonium tungsten bronzes, (NH4) x WO3−y . As analytical tools, TG/DTA-MS, XRD, SEM, Raman, XPS, and 1H-MAS NMR were used. The well-known α-hexagonal ammonium tungsten bronze (α-HATB, ICDD 42-0452) was thermally reduced and around 550 °C a hexagonal ammonium tungsten bronze formed, whose structure was similar to α-HATB, but the hexagonal channels were almost completely empty; thus, this phase was called reduced hexagonal (h-) WO3. In contrast with earlier considerations, it was found that the oxidation state of W atoms influenced at least as much the cell parameters of α-HATB and h-WO3, as the packing of the hexagonal channels. Between 600 and 650 °C reduced h-WO3 transformed into another ammonium tungsten bronze, whose structure was disputed in the literature. It was found that the structure of this phase—called β-HATB, (NH4)0.001WO2.79—was hexagonal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pedrosa AMG, Souza MJB, Marinkovic BA, Melo DMA. Structure and properties of bifunctional catalysts based on zirconia modified by tungsten oxide obtained by polymeric precursor method. Appl Catal A. 2008;342:56–62.

    Article  Google Scholar 

  2. Irie H, Miura S, Kamiya K, Hashimoto K. Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett. 2008;457:202–5.

    Article  CAS  Google Scholar 

  3. Huang T, Lin X, Xing J, Wang W, Shan Z, Huang F. Photocatalytic activities of hetero-junction semiconductors WO3/SrNb2O6. Mater Sci Eng B. 2007;141:49–54.

    Article  CAS  Google Scholar 

  4. Yang J, Li Y, Huang Y, Liang J, Shen PK. Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. J Power Sources. 2008;177:56–60.

    Article  CAS  Google Scholar 

  5. Dillon AC, Mahan AH, Deshpande R, Parilla PA, Jones KM, Lee SH. Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films. 2008;518:794–7.

    Article  Google Scholar 

  6. Higashimoto S, Shishido T, Ohno Y, Azuma M, Takahashi M, Anpo M. Photocharge-discharge behaviors of hybrid WO3/TiO2 film electrodes: conversion, storage of electrons, and the effect of the WO3 structure on rechargeability. J Electrochem Soc. 2007;154:F48–54.

    Article  CAS  Google Scholar 

  7. Suda Y, Kawasaki H, Ahshima T, Yagyuu Y. Characteristics of tungsten oxide thin films prepared on the flexible substrates using pulsed laser deposition. Thin Solid Films. 2008;516:4397–401.

    Article  CAS  Google Scholar 

  8. Gubbala S, Thangala J, Sunkara MK. Nanowire based electrochromic devices. Sol Energy Mater Sol C. 2008;91:813–20.

    Article  Google Scholar 

  9. Todorovski T, Najdowski M. The solution growth route and characterization of electrochromic tungsten oxide thin films. Mater Res Bull. 2007;42:2025–31.

    Article  CAS  Google Scholar 

  10. Grandqvist CG. Handbook of inorganic electrochromic materials. Amsterdam: Elsevier; 1995.

    Google Scholar 

  11. Wang S, Feng X, Yao J, Jiang L. Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed Engl. 2006;45:1264–7.

    Article  CAS  Google Scholar 

  12. He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, et al. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chem Mater. 2003;15:4039–45.

    Article  CAS  Google Scholar 

  13. Chen H, Xu N, Deng S, Lu D, Li Z, Zhou J, et al. Gasochromic effect and relative mechanism of WO3 nanowire films. Nanotechnology. 2007;18:205701 (6 pp).

    Article  Google Scholar 

  14. Lu DY, Chen J, Chen HJ, Gong L, Deng SZ, Xu NS. Raman study of thermochromic phase transition in tungsten trioxide nanowires. Appl Phys Lett. 2007;90:041919 (3 pp).

    Article  Google Scholar 

  15. Durrani SMA, Khawaja EE, Salim MA, Al-Kuhaili MF, Al-Shukri AM. Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide. Sol Energy Mater Sol Cell. 2002;71:313–25.

    Article  CAS  Google Scholar 

  16. Balázsi C, Wang L, Zayim EO, Szilágyi IM, Sedlackova K, Pfeifer J, et al. Nanosize hexagonal tungsten oxide for gas sensing applications. J Eur Ceram Soc. 2008;28:913–7.

    Article  Google Scholar 

  17. Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B Chem. 2008;133:321–6.

    Article  Google Scholar 

  18. Kanan SM, Waghe A, Jensen BL, Tripp CP. WO3 based sensors to selectively detect DMMP in the presence of alcohols. Talanta. 2007;72:401–7.

    Article  CAS  Google Scholar 

  19. Huelser TP, Lorke A, Ifeacho P, Wiggers H, Shulz C. Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition. J Appl Phys. 2007;102:124305 (7 pp).

    Article  Google Scholar 

  20. Lassner E, Schubert W-D. Tungsten. Properties, chemistry, technology of the element, alloys, and chemical compounds. New York: Kluwer Academic/Plenum Publishers; 1999.

    Google Scholar 

  21. Bartha L, Lassner E, Schubert W-D, Lux B, editors. Special issue on the chemistry of non-sag tungsten. Int J Refract Met Hard Mater 1995;13:1–164.

    Google Scholar 

  22. Lunk H-J, Ziemer B, Salmen M, Heidemann D. What is behind ‘tungsten blue oxides’? Int J Refract Met Hard Mater. 1993/1994;12:17–26.

  23. Lunk H-J, Salmen M, Heidemann D. Solid state 1H NMR studies of different tungsten blue oxides and related substances. Int J Refract Met Hard Mater. 1998;16:23–30.

    Article  CAS  Google Scholar 

  24. Kiss BA, Rom Berendné G, Gyarmathy G, Kutasi Feketéné Z. Ammónium-volfrámoxidbronz porkohászati alapanyag reduktív termikus bomlása. Magyar Kémiai Folyóirat (Hung). 1987;93:97–106.

    Google Scholar 

  25. Bartha L, Gyarmati G, Kiss BA, Németh T, Salamon A, Szalay T. Complex studies on intermedier decomposition products of amonium paratungstate. Acta Chim Acad Sci Hung. 1979;101:127–38.

    CAS  Google Scholar 

  26. Huao L, Zhao H, Mauvy F, Fourcade S, Labrugere C, Pouchard M, et al. Synthesis and mixed conductivity of ammonium tungsten bronze with tunneling structures. Solid State Sci. 2004;6:679–88.

    Article  Google Scholar 

  27. Gier TE, Pease DC, Sleight AW, Bither TA. New lithium, ammonium, and tin hexagonal tungsten bronzes prepared hydrothermally. Inorg Chem. 1968;7:1646–7.

    Article  CAS  Google Scholar 

  28. Michailovski A, Krumeich F, Patzke GR. Hierachical growth of mixed ammonium molybdenum/tungsten bronze nanorods. Chem Mater. 2004;16:1433–40.

    Article  CAS  Google Scholar 

  29. Zhan JH, Yang XG, Xie Y, Li BF, Qain YT, Jia YB. A solvothermal route for the synthesis of ammonium tungsten bronze. Solid State Ionics. 1999;126:373–7.

    Article  CAS  Google Scholar 

  30. Szilágyi IM, Madarász J, Hange F, Pokol G. Partial thermal reduction of ammonium paratungstate tetrahydrate. J Therm Anal Calorim. 2007;88:139–44.

    Article  Google Scholar 

  31. Szilágyi IM, Hange F, Madarász J, Pokol G. In situ HT-XRD study on the formation of hexagonal ammonium tungsten bronze by partial reduction of ammonium paratungstate tetrahydrate. Eur J Inorg Chem. 2006;17:3413–8.

    Article  Google Scholar 

  32. Szilágyi IM, Madarász J, Hange F, Pokol G. On-line evolved gas analyses (EGA by TG-FTIR and TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition and partial reduction of ammonium paratungstate tetrahydrate. Solid State Ionics. 2004;172:583–6.

    Article  Google Scholar 

  33. Szilágyi IM, Madarász J, Király P, Tárkányi G, Tóth AL, Szabó A, et al. Stability and controlled composition of hexagonal WO3. Chem Mater. 2008;20:4116–25.

    Article  Google Scholar 

  34. Mészáros M, Neugebauer J, Hange F. Processes of reductive decomposition of APT above 400°C; Transformation of APT → KTB → β-W in the presence of K. High Temp Mater Proc. 1996;15:111–5.

    Google Scholar 

  35. Neugebauer J, Hegedűs AJ, Millner T. Über die Reduktion des Ammoniumwolframates und Wolframtrioxyds mittels Ammoniak. Z Anorg Allg Chem. 1959;302:50–9.

    Article  CAS  Google Scholar 

  36. Szilágyi IM, Madarász J, Pokol G, Hange F, Szalontai G, Varga-Josepovits K, et al. The effect of K+ ion doping on the structure and thermal reduction of hexagonal ammonium tungsten bronze. J Therm Anal Calorim 2009; doi:10.1007/s10973-008-9752-1.

  37. Volkov VL. Synthesis and investigation of ammonium tungsten bronze. (Engl transl). Izv Akad Nauk SSSR Neorg Mater (Russ). 1990;26:125–9.

    CAS  Google Scholar 

  38. Madarász J, Szilágyi IM, Hange F, Pokol G. Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air. Anal Appl Pyrolysis. 2004;72:197–201.

    Article  Google Scholar 

  39. Cory DG, Ritchey WM. Suppression of signals from the probe in Bloch decay spectra. J Magn Reson. 1988;80:128–32.

    Google Scholar 

  40. Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U. Structural stability and phase transitions in WO3 f. J Phys Chem B. 2006;110:10430–5.

    Article  CAS  Google Scholar 

  41. Szilágyi IM, Pfeifer J, Balázsi C, Tóth AL, Varga-Josepovits K, Madarász J, et al. Thermal stability of hexagonal tungsten trioxide. J Therm Anal Calorim. 2008;98:499–505.

    Article  Google Scholar 

  42. Dickens PG, Halliwell AC, Murphy DJ, Wittingham MS. Preparation and characterization of a hexagonal ammonium tungsten bronze phase (NH4) x WO3. Trans Farad Soc. 1971;67:794–800.

    Article  CAS  Google Scholar 

  43. Oi J, Kishimoto A, Kudo T, Hiratani M. Hexagonal tungsten trioxide obtained from peroxo-polytungstate and reversible lithium electro-intercalation into its framework. J Solid State Chem. 1992;96:13–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I. M. S. thanks for an Aschner Lipót scholarship of GE Hungary ZRt., GE Consumer and Industrial–Lighting. A diffractometer purchase grant from the Agency for Research Fund Management (KPI-EU-GVOP-3.2.1.-2004-04-0224/3.0 KMA) and a Hungarian GVOP-3.2.1.-2004-04-0210/3.0 grant are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Miklós Szilágyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szilágyi, I.M., Sajó, I., Király, P. et al. Phase transformations of ammonium tungsten bronzes. J Therm Anal Calorim 98, 707–716 (2009). https://doi.org/10.1007/s10973-009-0287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0287-x

Keywords

Navigation