Skip to main content
Log in

Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of Dy(III), Tb(III), Gd(III), Eu(III), and Sm(III) propionate monohydrates was studied in argon by means of simultaneous differential thermal analysis and thermogravimetry, infrared-spectroscopy, X-ray diffraction, and optical microscopy. After dehydration, which takes place below 120 °C, all salts decompose into dioxycarbonates with simultaneous release of CO2 and C2H5COC2H5 (3-pentanone) between 250 and 460 °C. However, whereas the anhydrous Dy-, Tb-, and Gd-propionates appear to transform into RE2O2CO3 (rare earth [RE] = Dy, Tb, Gd) in a single step, an intermediate stage involving a RE2O(C2H5CO2)4 composition was evidenced in the case of the Eu- and Sm-propionates. For all compounds, further decomposition of RE2O2CO3 into the corresponding sesquioxides (RE2O3) is accompanied by the release of CO2. The thermal decomposition of Dy- and Tb-propionates occurs entirely in the solid state. In contrast the dehydrated Gd-, Eu-, and Sm-propionates melt at increasingly higher temperatures. Evidence for recrystallization was found in conjunction with the onset of decomposition of these three propionates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu JD, Li YX, Zhou XZ, Cai MX. Preparation and characterization of ceria nanoparticles using crystalline hydrate cerium propionate as precursor. Mater Lett. 2007;61:4989–92.

    Article  CAS  Google Scholar 

  2. Chen W, Tong Y, Liu Y, Liu M, Lin Y, Gong B, Cai Z, Zhong X. Facile synthesis and luminescent properties of Y2O3:Eu3+ nanophosphors via thermal decomposition of cocrystallized yttrium europium propionates. Ceram Int. 2013;39:3741–5.

    Article  CAS  Google Scholar 

  3. Ciontea L, Nasui M, Petrisor T Jr, Mos RB, Gabor MS, Varga RA, Petrisor T. Synthesis, crystal structure and thermal decomposition of [La2(CH3CH2COO)6·(H2O)3]·3.5H2O precursor for high-k La2O3 thin films deposition. Mater Res Bull. 2010;45:1203–8.

    Article  CAS  Google Scholar 

  4. Lee SG, Han TS. High-Tc YBa2Cu3O7−δ thin films fabricated from a stable acetate solution precursor. J Korean Phys Soc. 1997;31:406–9.

    CAS  Google Scholar 

  5. Matsubara I, Paranthaman M, Chirayil TG, Sun EY, Martin PM, Kroeger DM, Verebelyi DT, Christen DK. Preparation of epitaxial YbBa2Cu3O7−δ on SrTiO3 single crystal substrates using a solution process. Jpn J Appl Phys. 1999;38:L727–30.

    Article  CAS  Google Scholar 

  6. Lee HY, Kim SI, Lee YC, Hong YP, Park YH, Ko KH. New chemical route for YBCO thin films. IEEE Trans Appl Supercond. 2003;13:2743–66.

    Article  CAS  Google Scholar 

  7. Angrisani Armenio A, Augieri A, Ciontea L, Contini G, Davoli I, Galluzzi V, Mancini A, Rufoloni A, Petrisor T, Vannozzi A, Celentano G. Characterization of epitaxial YBa2Cu3O7−δ films deposited by metal propionate precursor solution. Supercond Sci Technol. 2008;21:125015.

    Article  Google Scholar 

  8. Ciontea L, Angrisani A, Celentano G, Petrisor T Jr, Rufoloni T, Vannozzi A, Augieri A, Galuzzi V, Mancini A, Petrisor T. Metal propionate synthesis of epitaxial YBa2Cu3O7−x films. J Phys Conf Ser. 2008;97:012302.

    Article  Google Scholar 

  9. Angrisani Armenio A, Celentano G, Rufoloni A, Vannozzi A, Augieri A, Galluzzi V, Mancini A, Ciontea L, Petrisor T, Contini G, Davoli I. Deposition and characterisation of metal propionate derived epitaxial YBa2Cu3O7−x films for coated conductor fabrication. IEEE Trans Appl Supercond. 2009;19:3204–7.

    Article  Google Scholar 

  10. Knoth K, Schlobach B, Hühne R, Schultz L, Holzapfel B. La2Zr2O7 and Ce–Gd–O buffer layers for YBCO coated conductors using chemical solution deposition. Physica C. 2005;426–431:979–84.

    Article  Google Scholar 

  11. Hassini A, Pomar A, Ruyter A, Roma N, Puig T, Obradors X. Conducting La0.7Sr0.3MnO3-superconducting YBaCu3O7 epitaxial bilayers grown by chemical solution deposition. Physica C. 2007;460–462:1357–8.

    Article  Google Scholar 

  12. Chen HS, Kumar RV, Glowacki BA. Study on chemical-solution-deposited lanthanum zirconium oxide film based on the Taguchi method. J Sol-Gel Sci Technol. 2009;51:102–11.

    Article  CAS  Google Scholar 

  13. Zhao Y, Suo HL, Grivel JC, Ye S, Liu M, Zhou ML. Study on CexLa1−xO2 buffer layer used in coated conductors by chemical solution method. J Inorg Mater. 2009;24:1201–4.

    Article  CAS  Google Scholar 

  14. Zhao Y, Konstantopoulou K, Wulff AC, Tang X, Tian H, Suo HL, Pastor JY, Grivel JC. Development of one meter long double-sided CeO2 buffered Ni–5at.% W templates by reel-to-reel chemical solution deposition route. IEEE Trans Appl Supercond. 2013;23:6600104.

    Article  Google Scholar 

  15. Ogawa M, Manabe K. Formation of dilanthanide monoxide tetrapropionate by thermal decomposition of propionate monohydrate of rare-earth elements (La, Ce, Pr, Nd). Nippon Kagaku Kaishi. 1993;5:617–22.

    Article  Google Scholar 

  16. Kaddouri A, Mazzocchia CJ. Thermoanalytic study of some metal propionates synthesised by sol–gel route: a kinetic and thermodynamic study. J Anal Appl Pyrolysis. 2002;65:253–67.

    Article  CAS  Google Scholar 

  17. Grivel JC. Thermal decomposition of Ln(C2H5CO2)3·H2O (Ln = Ho, Er, Tm and Yb). J Therm Anal Calorim. 2012;109:81–8.

    Article  CAS  Google Scholar 

  18. Grivel JC. Thermal decomposition of lutetium propionate. J Anal Appl Pyrolysis. 2010;89:250–4.

    Article  CAS  Google Scholar 

  19. Grivel JC. Thermal decomposition of yttrium(III) propionate and butyrate. J Anal Appl Pyrolysis. 2013;101:185–92.

    Article  CAS  Google Scholar 

  20. Nasui M, Bogatan (Pop) C, Ciontea L, Petrisor T. Synthesis, crystal structure modeling and thermal decomposition of yttrium propionate [Y2(CH3CH2COO)6·H2O]·3.5H2O. J Anal Appl Pyrolysis. 2012;97:88–93.

    Article  CAS  Google Scholar 

  21. Zhao Y, Grivel JC, Liu M, Suo HL. Surface engineering of biaxial Gd2Zr2O7 thin films deposited on Ni–5 at% W substrates by a chemical solution deposition method. CrystEngComm. 2012;14:3089–95.

    Article  CAS  Google Scholar 

  22. Zhao Y, Grivel JC, Napari M, Pavlopoulos D, Bednarčík J, von Zimmermann M. Highly textured Gd2Zr2O7 films grown on textured Ni–5 at.% W substrates by solution deposition route: growth, texture evolution, and microstructure dependency. Thin Solid Films. 2012;520:1965–72.

    Article  CAS  Google Scholar 

  23. National Institute of Advanced Industrial Science and Technology. SDBSWeb. http://sdbs.riodb.aist.go.jp. Accessed June 2013.

  24. Nadzharyan K, Mlynskaya V, Magunov R. LiC2H5COO–Y(C2H5COO)3–H2O system at 25 °C. Russ J Inorg Chem (Engl Transl). 1984;29:1797–9.

    Google Scholar 

  25. Turcotte RP, Sawyer JO, Eyring L. On the rare earth dioxymonocarbonates and their decomposition. Inorg Chem. 1969;8:238–46.

    Article  CAS  Google Scholar 

  26. McDevitt NT, Baun WL. Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim Acta. 1964;20:799–808.

    Article  CAS  Google Scholar 

  27. Masuda Y. Thermal decomposition of formates. Part IX. Thermal decomposition of rare earth formate anhydrides. Thermochim Acta. 1983;67:271–85.

    Article  CAS  Google Scholar 

  28. Ogawa M, Manabe K. Thermal decomposition of samarium(III) acetate tetrahydrate. Nippon Kagaku Kaishi. 1993;5:600–4.

    Article  Google Scholar 

  29. Gobert-Ranchoux E, Charbonnier F. Comportement thermique des propionates hydrates de calcium, strontium et barium. J Therm Anal. 1977;12:33–42.

    Article  CAS  Google Scholar 

  30. Barnes PA, Stephenson G, Warrington SB. The use of TA–GLC–MS as a quantitative specific EGA technique for the investigation of complex thermal decomposition reactions: the thermal decomposition of calcium propanoate. J Therm Anal. 1982;25:299–311.

    Article  CAS  Google Scholar 

  31. Skoršepa J, Godočíkova E, Černák J. Comparison on thermal decomposition of propionate, benzoate and their chloroderivative salts of Zn(II). J Therm Anal Calorim. 2004;75:773–80.

    Article  Google Scholar 

  32. Mos RB, Nasui M, Petrisor T Jr, Gabor MS, Varga RA, Ciontea L. Synthesis, crystal structure and thermal decomposition of Zr6O4(OH)4(CH3CH2COO)12. J Anal Appl Pyrolysis. 2012;97:137–42.

    Article  CAS  Google Scholar 

  33. Nasui M, Mos RB, Petrisor T Jr, Gabor MS, Varga RA, Ciontea L, Petrisor T. Synthesis, crystal structure and thermal decomposition of a new copper propionate [Cu(CH3CH2COO)2]·2H2O. J Anal Appl Pyrolysis. 2011;92:439–44.

    Article  CAS  Google Scholar 

  34. Hussein GAM, Kroenke WJ, Goda B, Miyaji K. Formation of dysprosium oxide from the thermal decomposition of hydrated dysprosium acetate and oxalate. J Anal Appl Pyrolysis. 1997;39:35–51.

    Article  CAS  Google Scholar 

  35. Hussein GAM. Formation, characterization, and catalytic activity of gadolinium oxide. Infrared spectroscopic studies. J Phys Chem. 1994;1994:9657–64.

    Article  Google Scholar 

  36. Mahfouz RM, Monshi MAS, Abd El-Salm NM. Kinetics of the thermal decomposition of γ-irradiated gadolinium acetate. Thermochim Acta. 2002;383:95–101.

    Article  CAS  Google Scholar 

  37. Mahfouz RM, Monshi MAS, Alshehri SM, Abd El-Salm NM. Isothermal decomposition of γ-irradiated samarium acetate. Radiat Phys Chem. 2000;59:381–5.

    Article  CAS  Google Scholar 

  38. Mahfouz RM, Alshehri SM, Monshi MAS, Abd El-Salm NM. Isothermal decomposition of γ-irradiated dysprosium acetate. Radiat Eff Defects Solids. 2002;157:515–9.

    Article  CAS  Google Scholar 

  39. Manabe K, Ogawa M. Thermal decomposition of terbium(III) acetate tetrahydrate. Nippon Kagaku Kaishi. 1982;4:694–6.

    Article  Google Scholar 

  40. Ogawa M, Manabe K. Thermal decomposition of europium(III) acetate tetrahydrate. J Ceram Soc Jpn Int Ed. 1988;96:870–3.

    Google Scholar 

  41. Shaplygin IS, Komarov VP, Lazarev VB. A thermogravimetric study of praseodymium(III), neodymium, samarium, gadolinium and holmium acetates, benzoates and abietates. J Therm Anal. 1979;15:215–23.

    Article  CAS  Google Scholar 

  42. Brzyska W, Ożga W. Thermal decomposition of rare earth element enanthates. J Therm Anal. 1994;41:849–58.

    Article  CAS  Google Scholar 

  43. Grivel JC, Zhao Y, Tang X, Pallewatta PGPA, Watenphul A, Zimmermann Mv. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere. Thermochim Acta. 2013;566:112–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Danish Agency for Science, Technology and Innovation under Contract number 09-065234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Grivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grivel, JC. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm). J Therm Anal Calorim 115, 1253–1264 (2014). https://doi.org/10.1007/s10973-013-3467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3467-7

Keywords

Navigation