Skip to main content
Log in

Thermal decomposition of heavy rare-earth butanoates, Ln(C3H7CO2)3 (Ln = Er, Tm, Yb and Lu) in argon

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behaviour of Ln(C3H7CO2)3 (Ln = Er, Tm, Yb or Lu) was studied in argon from room temperature by means of thermogravimetry and differential thermal analysis up to 1400 °C, by infrared spectroscopy, hot-stage optical microscopy and X-ray diffraction. Melting prior to decomposition was observed in all four compounds, but its course depends on the rare-earth element. Decomposition to sesquioxides proceeds via the formation of dioxymonocarbonates (Ln2O2CO3) and release of 4-heptanone (C3H7COC3H7) as well as carbon dioxide (CO2) without evidence for an intermediate oxobutanoate stage. During the decomposition of Ln2O2CO3 into the respective sesquioxides (Ln2O3), an intermediate plateau extending from approximately 550 to 850 °C appears in the TG traces. The overall composition during this stage corresponds approximately to Ln2O2.8(CO3)0.2, but the state is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state seems to decrease with the mass of the rare-earth elements. Complete conversion to Ln2O3 is reached at about 1100 °C. The overall thermal decomposition behaviour of the title compounds is different from previous reports for other rare-earth butanoates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smith JG, Yokoyama WH, German JB. Butyric acid from the diet: actions at the level of gene expression. Crit Rev Food Sci. 1998;38:259–97.

    Article  CAS  Google Scholar 

  2. Straumal BB, Mazilkin AA, Protasova SG, Stakhanova SV, Straumal PB, Bulatov MF, Shutz G, Tietze T. Grain boundaries as a source of ferromagnetism and increased solubility of Ni in nanograined ZnO. Rev Adv Mater Sci. 2015;41:61–71.

    Google Scholar 

  3. Zhao Y, Torres P, Norby P, Wulff AC, Grivel JC. Comparison study of YBa2Cu3O7−x films deposited by using various carboxylate solutions. IEEE Trans Appl Supercond. 2015;25:6600204.

    Google Scholar 

  4. Zhang YJ, Bhadbhade M, Scales N, Karatchevtseva I, Price JR, Lu K, Lumpkin GR. Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks. J Solid State Chem. 2014;219:1–8.

    Article  CAS  Google Scholar 

  5. Gallardo LA, Carpentieri I, Laurent MP, Costa L, Wimmer MA. Europium stearate additives delay oxidation of UHMWPE for orthopaedic applications: a pilot study. Clin Orthop Relat Res. 2011;469:2294–301.

    Article  Google Scholar 

  6. Paul RC, Bains MS, Ghotra JS. Studies in carboxylates of metals: Part III—lanthanum & cerium(III) carboxylates. Indian J Chem. 1969;7:514–7.

    CAS  Google Scholar 

  7. Grivel JC, Zhao Y, Tang X, Pallewatta PGPA, Watenphul A, Zimmernann MV. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere. Thermochim Acta. 2013;566:112–7.

    Article  CAS  Google Scholar 

  8. Grivel JC. Thermal decomposition of yttrium(III) propionate and butyrate. J Anal Appl Pyrolysis. 2013;101:185–92.

    Article  CAS  Google Scholar 

  9. Jongen L, Binnemans K, Hinz D, Meyer G. Thermal behavior of lanthanum(III) alkanoates. Liq Cryst. 2001;28:1727–33.

    Article  CAS  Google Scholar 

  10. Loginova VE, Dvornikova LM, Khazov LA, Rubinshtein AS. Physicochemical properties of rare-earth butyrates. Zh Neorg Khim. 1975;20:895–900.

    CAS  Google Scholar 

  11. Grivel JC. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm). J Therm Anal Calorim. 2014;115:1253–64.

    Article  CAS  Google Scholar 

  12. Grivel JC, Andersen NH, Pallewatta PGAP, Zhao Y, Zimmermann Mv. Influence of Bi, Se and Te additions on the formation temperature of MgB2. Supercond Sci Technol. 2012;25:015010.

    Article  Google Scholar 

  13. Grivel JC, Wulff AC, Zhao Y, Bednarčik J, Zimmermann Mv. In situ study on the formation of FeTe. J Mater Sci. 2011;46:4540–4.

    Article  CAS  Google Scholar 

  14. Martínez Casado FJ, Sánchez Arenas A, García Pérez MV, Redondo Yélamos MI, López de Andrés S, Cheda JAR. Short chain lead(II) alkanoates as ionic liquids and glass formers: A d.s.c., X-ray diffraction and FTIR spectroscopy study. J Chem Thermodyn. 2007;39:455–61.

    Article  Google Scholar 

  15. Cheda JAR, Garcia MV, Redondo MI, Gargani S, Ferloni P. Short chain copper(II) n-alkanoate liquid crystals. Liquid Cryst. 2004;31:1–14.

    Article  CAS  Google Scholar 

  16. Ramos Moita MF, Duarte MLTS, Fausto R. An infrared spectroscopic study of crystalline copper(II) propionate and butyrate. Spectrosc Lett. 1994;1994(27):1421–30.

    Article  Google Scholar 

  17. NIST Chemistry WebBook, Standard Reference Database Number 69 http://webbook.nist.gov/cgi/cbook.cgi?ID=C107926&Units=SI&Mask=80#IR-Spec.

  18. Torres P, Norby P, Grivel JC. Thermal decomposition of barium valerate in argon. J Anal Appl Pyrolysis. 2015;116:120–6.

    Article  CAS  Google Scholar 

  19. Liu S, Ma R-J. Synthesis of hydrated lutetium carbonate. Acta Chem Scand. 1997;51:893–5.

    Article  CAS  Google Scholar 

  20. Grivel JC. Thermal decomposition of Ln(C2H5CO2)3·H2O (Ln = Ho, Er, Tm and Yb). J Therm Anal Calorim. 2012;109:81–8.

    Article  CAS  Google Scholar 

  21. Grivel JC. Thermal decomposition of lutetium propionate. J Anal Appl Pyrolysis. 2010;89:250–4.

    Article  CAS  Google Scholar 

  22. Grivel JC, Zhao Y, Suarez Guevara MJ, Watenphul A. Studies on the thermal decomposition of lanthanum(III) valerate and lanthanum(III) caproate in argon. Thermochim Acta. 2015;612:1–9.

    Article  CAS  Google Scholar 

  23. Grivel JC, Zhao Y, Tang X, Pallewatta PGPA, Watenphul A, Zommermann Mv. Thermal decomposition of yttrium(III) valerate in argon. J Anal Appl Pyrolysis. 2014;106:125–31.

    Article  CAS  Google Scholar 

  24. Grivel JC, Guevara MJS, Attique F, Zhao Y, Tang X, Pallewatta PGPA, Watenphul A, Zimmermann Mv. Thermal decomposition of yttrium(III) hexanoate in argon. J Anal Appl Pyrolysis. 2015;112:237–43.

    Article  CAS  Google Scholar 

  25. Dododzhanov MA, Komarov VP, Shaplygin IS. Thermal decomposition of dysprosium, holmium, erbium and ytterbium abietates. Zh Neorg Khim. 1986;31:640–2.

    CAS  Google Scholar 

  26. Nagashima K, Wakita H, Mochizuki A. The synthesis of crystalline rare earth carbonates. Bull Chem Soc Jpn. 1973;46:152–6.

    Article  CAS  Google Scholar 

  27. Glasner A, Steinberg M. Thermal decomposition of the light rare earth oxalates. J Inorg Nucl Chem. 1961;22:39–48.

    Article  CAS  Google Scholar 

  28. Moscardini D’Assunção L, Giolito I, Ionashiro M. Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochim Acta. 1989;137:319–30.

    Article  Google Scholar 

  29. Sakharova YG, Bogodukhova TI, Evtushenko IY, Loginov VI. Thermal decomposition of carbamide compounds of thulium, ytterbium and lutetium propionates. Z Neorg Khim. 1979;24:323–30.

    CAS  Google Scholar 

  30. Sakharova YG, Bogodukhova TI, Loginov VI, Evtushenko IY. Thermal decomposition of carbamide compounds of terbium, dysprosium, holmium, erbium and yttrium propionates. Z Neorg Khim. 1978;23:2953–8.

    CAS  Google Scholar 

  31. Turcotte RP, Sawyer JO, Eyring L. On the rare earth dioxymonocarbonates and their decomposition. Inorg Chem. 1969;8:238–46.

    Article  CAS  Google Scholar 

  32. Masuda Y. Thermal decomposition of formates. Part IX. Thermal decomposition of rare earth formate anhydrides. Thermochim Acta. 1983;67:271–85.

    Article  CAS  Google Scholar 

  33. Hussein GAM, Balboul BAA. Ytterbium oxide from different precursors: formation and characterization Thermoanalytical studies. Powder Technol. 1999;103:156–64.

    Article  CAS  Google Scholar 

  34. Hussein GAM, Mekhemer GAH, Balboul BAA. Formation and surface characterization of thullium oxide catalysts. Phys Chem Chem Phys. 2000;2:2033–8.

    Article  CAS  Google Scholar 

  35. Ogawa M, Manabe K. Thermal decomposition of lutetium(III) acetate tetrahydrate. J Ceram Soc Jpn Inter Ed. 1988;96:660–4.

    Google Scholar 

  36. Glasner A, Steinberg M. The thermal decomposition of erbium and lutetium oxalates. J Inorg Nucl Chem. 1961;22:156–9.

    Article  CAS  Google Scholar 

  37. Glasner A, Levy E, Steinberg M. Thermal decomposition of ytterbium oxalate. J Inorg Nucl Chem. 1964;26:1143–9.

    Article  CAS  Google Scholar 

  38. Muraishi K, Yokobayashi H, Nagase K. Systematics on the thermal reactions of lanthanide malonates Ln2(C3H2O4)3·nH2O in the solid state. Thermochim Acta. 1991;182:209–17.

    Article  CAS  Google Scholar 

  39. Brzyska W, Paszkowska B. Studies on the thermal decomposition of rare earth caproates. J Therm Anal. 1998;51:561–6.

    Article  CAS  Google Scholar 

  40. Brzyska W, Ożga W. Thermal decomposition of yttrium, lanthanum and lanthanide complexes of square acid in air atmosphere. J Therm Anal. 1987;32:2001–8.

    Article  CAS  Google Scholar 

  41. Brzyska W, Ożga W. Thermal decompositions of lanthanum and lanthanide salts of sebacic acid. J Therm Anal. 1991;37:2573–83.

    Article  CAS  Google Scholar 

  42. Locatelli JR, Rodrigues EC, Siqueira AB, Ionashiro EY, Bannach G, Ionashiro M. Synthesis, characterization and thermal behavior of solid-state compounds of yttrium and lanthanide benzoates. J Therm Anal Calorim. 2007;90:737–46.

    Article  CAS  Google Scholar 

  43. Rzączyńska Z, Bartyzel A. Synthesis and characterization of complexes of rare earth elements with 1,1-cyclobutanedicarboxylic acid. J Therm Anal Calorim. 2002;68:937–49.

    Article  Google Scholar 

  44. Kula A. Thermal decomposition of lanthanide(III) and Y(III) 3,4,5-trihydroxybenzoates. J Therm Anal Calorim. 2004;75:79–86.

    Article  CAS  Google Scholar 

  45. Brzyska W, Król A. Thermal decomposition of yttrium and lanthanide benzene-1,4-dioxyacetates in air atmosphere. Thermochim Acta. 1991;182:293–301.

    Article  CAS  Google Scholar 

  46. Brzyska W, Kula A. Studies on the thermal decomposition of rare earth element complexes with 2-naphthoic acid. J Therm Anal. 1995;44:1159–69.

    Article  CAS  Google Scholar 

  47. Brzyska W, Kula A. Thermal decomposition of rare earth element complexes with 3,4-dihydroxybenzoic acid in air. Thermochim Acta. 1994;239:127–36.

    Article  CAS  Google Scholar 

  48. Łyszczek R, Rzączyńska Z, Kula A, Gładysz-Płaska. Thermal and luminescence characterization of lanthanide 2,6-naphthalenedicarboxylates series. J Anal Appl Pyrolysis. 2011;92:347–54.

    Article  Google Scholar 

  49. Calderon-Moreno JM, Pol VG, Suh SH, Shin HK, Popa M. Formation mechanism and red light emission photoluminescence of single-phase crystalline Eu2O2CO3 nanoplates compared with Y2O3: Eu phosphor. J Nanosci Nanotechnol. 2014;14:5473–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy Conversion and Storage (Project Nr. 49605 E-5). The authors also acknowledge financial support from DANSCATT as well as DESY (Project I-20110113 EC) for granting beamtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Grivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grivel, JC., Zhao, Y., Tang, X. et al. Thermal decomposition of heavy rare-earth butanoates, Ln(C3H7CO2)3 (Ln = Er, Tm, Yb and Lu) in argon. J Therm Anal Calorim 126, 1111–1122 (2016). https://doi.org/10.1007/s10973-016-5691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5691-4

Keywords

Navigation