Skip to main content
Log in

Thermal decomposition of Ln(C2H5CO2)3·H2O (Ln = Ho, Er, Tm and Yb)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of Ho(III), Er(III), Tm(III) and Yb(III) propionate monohydrates in argon was studied by means of thermogravimetry (TG), differential thermal analysis (DTA), IR-spectroscopy and X-ray diffraction (XRD). Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous propionates to Ln2O2CO3 (Ln = Ho, Er, Tm or Yb) with the evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 and 400 °C. The further decomposition of Ln2O2CO3 to the respective sesquioxides Ln2O3 is characterized by an intermediate plateau extending from approximately 500–700 °C in the TG traces. This stage corresponds to an overall composition of Ln2O2.5(CO3)0.5 but is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state decreases for the lighter rare-earth (RE) compounds studied. Full conversion to Ln2O3 is achieved at about 1,100 °C. The overall thermal decomposition behaviour of the title compounds is similar to that previously reported for Lu(C2H5CO2)3·H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Izumi T, Shiohara Y. R&D of coated conductors for applications in Japan. Physica C. 2010;470:967–70.

    Article  CAS  Google Scholar 

  2. Bhuiyan MS, Paranthaman M, Sathyamurthy S. Chemical solution-based epitaxial oxide films on biaxially textured Ni–W substrates with improved out-of-plane texture for YBCO-coated conductors. J Electron Mater. 2007;36:1270–4.

    Article  CAS  Google Scholar 

  3. Lee SG, Han TS. High-Tc YBa2Cu3O7−δ thin films fabricated from a stable acetate solution precursor. J Korean Phys Soc. 1997;31:406–9.

    CAS  Google Scholar 

  4. Matsubara I, Paranthaman M, Chirayil TG, Sun EY, Martin PM, Kroeger DM, Verebelyi DT, Christen DK. Preparation of epitaxial YbBa2Cu3O7 − δ on SrTiO3 single crystal substrates using a solution process. Jpn J Appl Phys. 1999;38:L727–30.

    Article  CAS  Google Scholar 

  5. Lee HY, Kim SI, Lee YC, Hong YP, Park YH, Ko KH. New chemical route for YBCO thin films. IEEE Trans Appl Supercond. 2003;13:2743–66.

    Article  CAS  Google Scholar 

  6. Angrisani Armenio A, Augieri A, Ciontea L, Contini G, Davoli I, Galluzzi V, Mancini A, Rufoloni A, Petrisor T, Vannozzi A, Celentano G. Characterization of epitaxial YBa2Cu3O7 − δ films deposited by metal propionate precursor solution. Supercond Sci Technol. 2008;21:125015 (7 pp).

    Google Scholar 

  7. Ciontea L, Angrisani A, Celentano G, Petrisor T Jr, Rufoloni A, Vannozzi A, Augieri A, Galuzzi V, Mancini A, Petrisor T. Metal propionate synthesis of epitaxial YBa2Cu3O7 − x films. J Phys Conf Ser. 2008;97:012302 (6 pp).

    Google Scholar 

  8. Angrisani Armenio A, Celentano G, Rufoloni A, Vannozzi A, Augieri A, Galluzzi V, Mancini A, Ciontea L, Petrisor T, Contini G, Davoli I. Deposition and characterisation of metal propionate derived epitaxial YBa2Cu3O7 − x films for coated conductor fabrication. IEEE Trans Appl Supercond. 2009;19:3204–7.

    Article  Google Scholar 

  9. Knoth K, Schlobach B, Hühne R, Schultz L, Holzapfel B. La2Zr2O7 and Ce–Gd–O buffer layers for YBCO coated conductors using chemical solution deposition. Physica C. 2005;426–431:979–84.

    Article  Google Scholar 

  10. Hassini A, Pomar A, Ruyter A, Roma N, Puig T, Obradors X. Conducting La0.7Sr0.3MnO3-superconducting YBaCu3O7 epitaxial bilayers grown by chemical solution deposition. Physica C. 2007;460–462:1357–8.

    Article  Google Scholar 

  11. Chen HS, Kumar RV, Glowacki BA. Study on chemical-solution-deposited lanthanum zirconium oxide film based on the Taguchi method. J Sol–Gel Sci Technol. 2009;51:102–11.

    Article  CAS  Google Scholar 

  12. Zhao Y, Suo HL, Grivel JC, Ye S, Liu M, Zhou ML. Study on CexLa1 − xO2 buffer layer used in coated conductors by chemical solution method. J Inorg Mater. 2009;24:1201–4.

    Article  CAS  Google Scholar 

  13. Larbalestier D, Gurevich A, Feldmann DM, Polyanskii A. High-Tc superconducting materials for electric power applications. Nature. 2001;414:368–77.

    Article  CAS  Google Scholar 

  14. Coll M, Pomar A, Puig T, Obradors X. Atomically flat surface: the key issue for solution-derived epitaxial multilayers. Appl Phys Exp 2008;1:121701 (3 pp).

    Google Scholar 

  15. Kaddouri A, Mazzocchia C, Tempesti E, Nomen R, Sempere J. Sol-gel processing of copper-chromium catalysts for ester hydrogenation. J Therm Anal. 1009;53:533–45.

    Article  Google Scholar 

  16. Gobert-Ranchoux E, Charbonnier F. Comportement thermique des propionates hydrates de calcium, strontium et barium. J Therm Anal. 1977;12:33–42.

    Article  CAS  Google Scholar 

  17. Kaddouri A, Mazzocchia CJ. Thermoanalytic study of some metal propionates synthesised by sol-gel route: a kinetic and thermodynamic study. J Anal Appl Pyrolysis. 2002;65:253–67.

    Article  CAS  Google Scholar 

  18. Ciontea L, Nasui M, Petrisor T Jr, Mos RB, Gabor MS, Varga RA, Petrisor T. Synthesis, crystal structure and thermal decomposition of [La2(CH3CH2COO)6·(H2O)3]·3.5H2O precursor for high-k La2O3 thin films deposition. Mater Res Bull. 2010;45:1203–8.

    Article  CAS  Google Scholar 

  19. Grivel JC. Thermal decomposition of lutetium propionate. J Anal Appl Pyrolysis. 2010;89:250–4.

    Article  CAS  Google Scholar 

  20. Sakharova YG, Bogodukhova TI, Evtushenko IY, Loginov VI. Thermal decomposition of carbamide compounds of thulium, ytterbium and lutetium propionates. Z Neorg Khim. 1979;24:323–30.

    CAS  Google Scholar 

  21. Nadzharyan K, Mlynskaya V, Magunov R. LiC2H5COO–Y(C2H5COO)3–H2O system at 25 °C. Russ J Inorg Chem (Engl Transl). 1984;29:1797–9.

    Google Scholar 

  22. Liu S, Ma RJ. Synthesis of hydrated lutetium carbonate. Acta Chem Scand. 1997;51:893–5.

    Article  CAS  Google Scholar 

  23. Hussein GAM, Balboul BAA. Ytterbium oxide from different precursors: formation and characterization. Thermoanalytical studies. Powder Technol. 1999;103:156–64.

    Article  CAS  Google Scholar 

  24. Hussein GAM, Mekhemer GAH, Balboul BAA. Formation and surface characterization of thulium oxide catalysts. Phys Chem Chem Phys. 2000;2:2033–8.

    Article  CAS  Google Scholar 

  25. Hussein GAM, Balboul BAA, Mekhemer GAH. Holmium oxide from holmium acetate, formation and characterization: thermoanalytical studies. J Anal Appl Pyrolysis. 2000;56:263–72.

    Article  CAS  Google Scholar 

  26. Mahfouz RM, Al-Shehri SM, Monshi MAS, Alhaizan AI, Abd El-Salam NM. Isothermal decomposition of γ-irradiated erbium acetate. Radiat Eff Defects Solids. 2007;162:95–100.

    Article  CAS  Google Scholar 

  27. Balboul BAA. Thermal decomposition study of erbium oxalate hexahydrate. Thermochim Acta. 2000;351:55–60.

    Article  CAS  Google Scholar 

  28. Glasner A, Levy E, Steinberg M. Thermal decomposition of ytterbium oxalate. J Inorg Nucl Chem. 1964;26:1143–9.

    Article  CAS  Google Scholar 

  29. Masuda Y. Thermal decomposition of formates. Part IX. Thermal decomposition of rare earth formate anhydrides. Thermochim Acta. 1983;67:271–85.

    Article  CAS  Google Scholar 

  30. Muraishi K, Yokobayashi H, Nagase K. Systematics on the thermal reactions of lanthanide malonates Ln2(C3H2O4)3·nH2O in the solid state. Thermochim Acta. 1991;182:209–17.

    Article  CAS  Google Scholar 

  31. Hites A, Biemann K. On the mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. J Am Chem Soc. 1972;94:5772–7.

    Article  CAS  Google Scholar 

  32. Barnes PA, Stephenson G, Warrington SB. The use of TA–GLC–MS as a quantitative specific EGA technique for the investigation of complex thermal decomposition reactions: the thermal decomposition of calcium propanoate. J Therm Anal. 1982;25:299–311.

    Article  CAS  Google Scholar 

  33. Skoršepa J, Godočíkova E, Černák J. Comparison on thermal decomposition of propionate, benzoate and their chloroderivative salts of Zn(II). J Therm Anal Calorim. 2004;75:773–80.

    Article  Google Scholar 

  34. El Baydi M, Poillerat G, Rehspringer JL, Gautier JL, Koenig JF, Charlier P. A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J Solid State Chem. 1994;109:281–8.

    Article  CAS  Google Scholar 

  35. McDevitt NT, Baun WL. Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim Acta. 1964;20:799–808.

    Article  CAS  Google Scholar 

  36. Dododzhanov MA, Komarov VP, Shaplygin IS. Thermal decomposition of dysprosium, holmium, erbium and ytterbium abietates. Zh Neorg Khim. 1986;31:640–2.

    CAS  Google Scholar 

  37. Nagashima K, Wakita H, Mochizuki A. The synthesis of crystalline rare earth carbonates. Bull Chem Soc Jpn. 1973;46:152–6.

    Article  CAS  Google Scholar 

  38. Glasner A, Steinberg M. Thermal decomposition of the light rare earth oxalates. J Inorg Nucl Chem. 1961;22:39–48.

    Article  CAS  Google Scholar 

  39. Moscardini D’Assunção L, Giolito I, Ionashiro M. Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochim Acta. 1989;137:319–30.

    Article  Google Scholar 

  40. Sakharova YG, Bogodukhova TI, Loginov VI, Evtushenko IY. Thermal decomposition of carbamide compounds of terbium, dysprosium, holmium, erbium and yttrium propionates. Z Neorg Khim. 1978;23:2953–8.

    CAS  Google Scholar 

  41. Turcotte RP, Sawyer JO, Eyring L. On the rare earth dioxymonocarbonates and their decomposition. Inorg Chem. 1969;8:238–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Danish Agency for Science, Technology and Innovation under contract number 09-062997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Grivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grivel, JC. Thermal decomposition of Ln(C2H5CO2)3·H2O (Ln = Ho, Er, Tm and Yb). J Therm Anal Calorim 109, 81–88 (2012). https://doi.org/10.1007/s10973-011-1745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1745-9

Keywords

Navigation