Skip to main content
Log in

Thermoanalytical study of acid-treated clay containing amino acid immobilized on its surface

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the incorporation of amino acid molecules in an acid-activated montmorillonite by means of solid characterization after the incorporation of these biomolecules. The acid activation procedure was carried out for the purpose of increasing the acid sites in the clay as well as the impurity elimination in the mineral. Cysteine, aspartic, and glutamic acids were adsorbed on montmorillonite K10 which was previously treated with a hydrochloric acid solution. The clay was put in contact with amino acid solutions at two different concentrations. Each amino acid was adsorbed at identical conditions, with the pH fixed to ensure the charge of molecules and surface clay. The solid was characterized by means of X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption at 77 K. After the amino acid adsorption, the powders showed changes in their characteristics as well as in their thermal behavior, which depended on both the concentration and the nature of the adsorbed amino acid. The thermal decomposition and elimination of cysteine occurred at a higher temperature than the aspartic and glutamic acid; the complete removal of glutamic acid molecules was not observed at 850 °C. The differences observed in the solid characteristic after the adsorption of each amino acid were discussed. Both the thermoanalytical study and characterization of materials after the interaction with amino acid molecules can be useful to understand the adsorption mechanism of biomolecules on solid surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lopes I, Piao L, Stievano L, Lambert JF. Adsorption of amino acids on oxide supports: a solid-state NMR study of glycine adsorption on silica and alumina. J Phys Chem C. 2009;113:18163–72.

    Article  CAS  Google Scholar 

  2. Trudeau TG, Hore DK. Hydrophobic amino acid adsorption on surface of varying wettability. Langmuir. 2010;26:11095–102.

    Article  CAS  Google Scholar 

  3. Noren K, Loring JS, Persson P. Adsorption of alpha amino acids at the water/goethite interface. J Colloid Interface Sci. 2008;319:416–28.

    Article  CAS  Google Scholar 

  4. Zaia DMA. A review of adsorption of amino acid on minerals Was it important for origin of life? Amino Acid. 2004;27:113–8.

    Article  CAS  Google Scholar 

  5. Benetoli LOB, de Souza CMD, da Silva KL, de Souza Jr IG, de Santana E, Paesano A Jr, da Costa ACS, Zai TBV, Zai DAM. Amino acid interaction with and adsorption on clays: FTIR and Mösbauer spectroscopy and X-ray diffractometry investigation. Orig Life Evol Biospheres. 2007;37:479–93.

    Article  CAS  Google Scholar 

  6. Giacomelli CE, Avena MJ, De Pauli CP. Aspartic acid adsorption onto TiO2 particles surface, experimental data and model calculations. Langmuir. 1995;11:3483–90.

    Article  CAS  Google Scholar 

  7. Wang X-Ch, Lee C. Adsorption and desorption of aliphatic amines, amino acid and acetate by clay minerals and marine sediments. Marine Chem. 1993;44:1–23.

    Article  CAS  Google Scholar 

  8. Wedyan M, Preston MR. Isomers-selective adsorption of amino acids by components of natural sediments. Environ Sci Technol. 2005;39:2115–9.

    Article  CAS  Google Scholar 

  9. de Paiva LB, Morales AR, Valenzuela-Díaz FR. Organoclays: properties, preparation and applications. Appl Clay Sci. 2008;42:8–24.

    Article  Google Scholar 

  10. Kooli F. Exfoliation properties of acid-activated montmorillonite and their resulting organoclay. Langmuir. 2009;25:724–30.

    Article  CAS  Google Scholar 

  11. Mallakpour S, Dinari M. Preparation, characterization, and thermal properties of organoclay hybrids based on trifunctional natural amino acids. J Therm Anal Calorim. 2013;111:611–8.

    Article  CAS  Google Scholar 

  12. Wei M, Guo J, Shi Z, Yuan Q, Pu M, Rao G, Duan X. Preparation and characterization of l-cystine and l-cysteine intercalated layered double hydroxides. J Mater Sci. 2007;42:2684–9.

    Article  CAS  Google Scholar 

  13. Yuan Q, Wei M, Evans DG, Duan X. Preparation and investigation of thermolysis of l-aspartic intercalated layered double hydroxide. J Phys Chem B. 2004;108:12381–7.

    Article  CAS  Google Scholar 

  14. Zaia DAM. Adsorption of amino acids and nucleic acid bases onto minerals: a few suggestions for prebiotic chemistry experiments. Int J Astrobiol. 2012;11:229–34.

    Article  CAS  Google Scholar 

  15. Basiuk VA, Gromovoy TY. Comparative study of amino acid adsorption on bare and octadecyl silica from water using high performance liquid chromatography. Colloids Surf A. 1996;118:127–40.

    Article  CAS  Google Scholar 

  16. Lambert JF. Adsorption and polymerization of amino acids on minerals surface: a review. Orig Life Evol Biospheres. 2008;38:211–42.

    Article  CAS  Google Scholar 

  17. Kitadai N, Yokoyama T, Nakashima S. ATR-IR spectroscopy study of l-lysine adsorption on amorphous silica. J Colloid Interface Sci. 2009;329:31–7.

    Article  CAS  Google Scholar 

  18. Kitadai N, Yokoyama T, Nakashima S. In situ ATR-IR investigation of l-lysine adsorption on montmorillonite. J Colloid Interface Sci. 2009;338:395–401.

    Article  CAS  Google Scholar 

  19. Meunier A. Clays. 1st ed. Berlin: Springer-Verlag; 2005.

    Google Scholar 

  20. Bhattacharga KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface. 2008;140:114–31.

    Article  Google Scholar 

  21. Brown DR, Rhodes CN. Bronsted and Lewis acid catalysis with ion-exchanged clays. Catal Lett. 1997;45:35–40.

    Article  CAS  Google Scholar 

  22. Chitnis SR, Sharma MM. Industrial applications of acid-treated clays as catalysts. React Funct Polym. 1997;32:93–115.

    Article  CAS  Google Scholar 

  23. Pardhakar A, Cuadros J, Sephton MA, Dubbin W, Coles BJ, Weiss D. Adsorption of l-lysine on montmorillonite. Colloid Surf A. 2007;307:142–9.

    Article  Google Scholar 

  24. Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic Press; 1980.

    Google Scholar 

  25. Bhowmik HHP, Zhao B, Hamon MA, Itkis ME, Haddon RC. Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration. Chem Phys Lett. 2001;345:25–8.

    Article  Google Scholar 

  26. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon. 1999;37:1215–21.

    Article  CAS  Google Scholar 

  27. Fukushima Y. X-ray diffraction study of aqueous montmorillonite emulsions. Clays Clay Miner. 1984;32:320–6.

    Article  CAS  Google Scholar 

  28. Liu H, Yuan P, Liu D, Tan D, He H, Zhu J. Effect of solid acidity of clay minerals on the thermal decomposition of 12-aminolauric acid. J Therm Anal Calorim. 2013;114(1):125–30. doi:10.1007/s10973-012-2887-0.

    Article  CAS  Google Scholar 

  29. Madejová J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003;31:1–10.

    Article  Google Scholar 

  30. Ursu AV, Jinescu G, Gros F, Nistor ID, Miron ND, Lisa G, Silion M, Djelveh G, Azzouz A. Thermal and chemical stability of romanian bentonite. J Therm Anal Calorim. 2011;106:965–71.

    Article  CAS  Google Scholar 

  31. Balek V, Benes M, Malek Z, Matuschel G, Kettrup A, Yariv S. Emanation thermal analysis study of Na-montmorillonite and montmorillonite saturated with various cations. J Therm Anal Calorim. 2006;83:617–23.

    Article  CAS  Google Scholar 

  32. Fajnor VS, Jesenák K. Differential thermal analysis of montmorillonite. J Therm Anal. 1996;46:489–93.

    Article  CAS  Google Scholar 

  33. Mendioroz S, Pajares JA. Texture evolution of montmorillonite under progressive acid treatment: change from H3 to H2 type of hysteresis. Langmuir. 1987;3:676–81.

    Article  CAS  Google Scholar 

  34. Vierira AP, Berndt G, de Souza-Junior IG, Di Mauro E, Paesano A Jr, de Santana H, da Costa ACS, Zaia CTBV, Zaia DAM. Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mössbauer, EPR spectroscopy and X-ray diffractometry studies. Amino Acids. 2011;40:205–14.

    Article  Google Scholar 

  35. Bouchoucha M, Jaber M, Onfroy T, Lambert JF, Xue B. Glutamic acid adsorption and transformation on silica. J Phys Chem C. 2011;115:21813–25.

    Article  CAS  Google Scholar 

  36. Jalilehvand F, Mah V, Leung BO, Mink J, Bernard GM, Hajba L. Cadmium cysteine complexes in the solid state: a multispectroscopy study. Inorg Chem. 2009;48:4219–30.

    Article  CAS  Google Scholar 

  37. Shankar R, Kolandaivel P, Senthilkumar L. Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+ and Ca2+ metal cation complexes. J Phys Org Chem. 2011;24:553–67.

    Article  CAS  Google Scholar 

  38. de Santana E, Paesano A Jr, da Costa ACS, di Mauro E, de Souza IG, Ivashita FF, de Souza CMD, Zaia CTBV, Zaia DAM. Cysteine, thiourea and thiocyanate interactions with clays: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies. Amino Acids. 2010;38:1089–99.

    Article  CAS  Google Scholar 

  39. Malferrari D, Brigatti MF, Laurora A, Medici L, Pini S. Thermal behavior of Cu(II), Cd(II)-, and Hg(II)-exchanged montmorillonite complexed with cysteine. J Therm Anal Calorim. 2006;86:365–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been financed by the University of Guanajuato through of DAIP office (Direccion de Apoyo a la Investigacion y el Posgrado). We acknowledge to Esthela Ramos and Cesar Contreras for their constructive comments about the manuscript. The authors also thank Martin Rodriguez Garcia for the figure edition in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rangel-Porras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel-Rivera, P., Rangel-Porras, G., Pfeiffer-Perea, H. et al. Thermoanalytical study of acid-treated clay containing amino acid immobilized on its surface. J Therm Anal Calorim 115, 1359–1369 (2014). https://doi.org/10.1007/s10973-013-3464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3464-x

Keywords

Navigation