Skip to main content
Log in

Effects of solid acidity of clay minerals on the thermal decomposition of 12-aminolauric acid

A thermogravimetry study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the effects of four types of clay minerals on the thermal decomposition of 12-aminolauric acid (ALA) were investigated. The decomposition temperature of ALA in ALA–clay complexes was in the range of 200–500 °C. The derivative thermogravimetry results indicated that all clay minerals exhibited catalytic activity on the decomposition of ALA. Pure ALA decomposed at approximately 464 °C, a temperature higher than the decomposition temperature of ALA in the presence of clay minerals. The decomposition temperature of ALA in different ALA–clay complexes follows the order illite (452 °C) > kaolinite (419 °C) > rectorite (417 °C) > montmorillonite (400 °C). This order is negatively correlated with the amounts of solid acid sites in the clay minerals, indicating that ALA is catalyzed by the solid acid sites in these minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huizinga BJ, Tannenbaum E, Kaplan IR. The role of minerals in the thermal alteration of organic matter—III. Generation of bitumen in laboratory experiments. Org Geochem. 1987;11(6):591–604.

    Article  CAS  Google Scholar 

  2. Li S, Guo S, Tan X. Characteristics and kinetics of catalytic degradation of immature kerogen in the presence of mineral and salt. Org Geochem. 1998;29(5–7):1431–9.

    Article  CAS  Google Scholar 

  3. Pan C, Jiang L, Liu J, Zhang S, Zhu G. The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experiments. Org Geochem. 2010;41(7):611–26.

    Article  CAS  Google Scholar 

  4. Tannenbaum E, Kaplan IR. Role of minerals in the thermal alteration of organic matter—I: generation of gases and condensates under dry condition. Geochim Cosmochim Acta. 1985;49(12):2589–604.

    Article  CAS  Google Scholar 

  5. Wei Z, Michael Moldowan J, Dahl J, Goldstein TP, Jarvie DM. The catalytic effects of minerals on the formation of diamondoids from kerogen macromolecules. Org Geochem. 2006;37(11):1421–36.

    Article  CAS  Google Scholar 

  6. Aizenshtat Z, Miloslavsky I, Heller-Kallai L. The effect of montmorillonite on the thermal decomposition of fatty acids under “bulk flow” conditions. Org Geochem. 1984;7(1):85–90.

    Article  CAS  Google Scholar 

  7. Goldstein TP. Geocatalytic reactions in formation and maturation of petroleum. AAPG Bull. 1983;67(1):152–9.

    CAS  Google Scholar 

  8. Heller-Kallai L, Aizenshtat Z, Miloslavski I. The effect of various clay minerals on the thermal decomposition of stearic acid under “bulk flow” conditions. Clay Miner. 1984;19(5):779–88.

    Article  CAS  Google Scholar 

  9. Johns W, McKallip TE. Burial diagenesis and specific catalytic activity of illite–smectite clays from Vienna Basin, Austria. AAPG Bull. 1989;73:472–82.

    CAS  Google Scholar 

  10. Jurg J, Eisma E. Petroleum hydrocarbons: generation from fatty acid. Science. 1964;144(3625):1451–2.

    Google Scholar 

  11. Shimoyama A, Johns WD. Catalytic conversion of fatty acids to petroleum-like paraffins and their maturation. Nature. 1971;232(33):140–4.

    CAS  Google Scholar 

  12. Zhang Z, Liu H, Li B, Ji Z, Lei N. Reaction of fatty acid ester catalyzed by minerals at low temperature in heavy water and water. J China Univ Pet Ed Nat Sci. 2008;32(5):118–20, 25.

    Google Scholar 

  13. Johns WD, Shimoyama A. Clay minerals and petroleum-forming reactions during burial and diagenesis. AAPG Bull. 1972;56(11):2160–7.

    CAS  Google Scholar 

  14. Baxby M, Patience RL, Bartle KD. The origin and diagenesis of sedimentary of organic nitrogen. J Pet Geol. 1994;17(2):211–30.

    Article  CAS  Google Scholar 

  15. Behar F, Gillaizeau B, Derenne S, Largeau C. Nitrogen distribution in the pyrolysis products of a type II kerogen (Cenomanian, Italy). Timing of molecular nitrogen production versus other gases. Energy Fuels. 2000;14(2):431–40.

    Article  CAS  Google Scholar 

  16. Kelemen SR, Freund H, Gorbaty ML, Kwiatek PJ. Thermal chemistry of nitrogen in kerogen and low-rank coal. Energy Fuels. 1999;13(2):529–38.

    Article  CAS  Google Scholar 

  17. Treibs A. Chlorophyll- and hemin derivatives in bituminous rocks, petroleum, mineral waxes and asphalts. Ann Chem. 1934;510:42–62.

    Article  CAS  Google Scholar 

  18. Williams LB, Ferrell R Jr. Ammonium substitution in illite during maturation of organic matter. Clay Clay Miner. 1991;39(4):400–8.

    Article  CAS  Google Scholar 

  19. Plante AF, Fernández JM, Leifeld J. Application of thermal analysis techniques in soil science. Geoderma. 2009;153(1–2):1–10.

    Article  CAS  Google Scholar 

  20. Frost R, Kristóf J, Horváth E. Controlled rate thermal analysis of sepiolite. J Therm Anal Calorim. 2009;98(2):423–8.

    Article  CAS  Google Scholar 

  21. Zhu J, Shen W, Ma Y, Ma L, Zhou Q, Yuan P, et al. The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability. J Therm Anal Calorim. 2011;109(1):301–9.

    Article  Google Scholar 

  22. Benesi HA. Acidity of catalyst surfaces. II. Amine titration using Hammett indicators. J Phys Chem. 1957;61(7):970–3.

    Article  CAS  Google Scholar 

  23. Li Y, Wang X, Wang J. Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ion. J Therm Anal Calorim. 2012;11(3):1199–206.

    Google Scholar 

  24. Cheng H, Yang J, Liu Q, He J, Frost RL. Thermogravimetric analysis–mass spectrometry (TG–MS) of selected Chinese kaolinites. Thermochim Acta. 2010;507–508:106–14.

    Article  Google Scholar 

  25. Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20(1–2):73–80.

    Article  CAS  Google Scholar 

  26. Wang H, Li C, Peng Z, Zhang S. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105(1):157–60.

    Article  CAS  Google Scholar 

  27. Earnest C. Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens. In: Smykatz-Kloss W, Warne S, editors. Thermal analysis of selected illite and smectite clay minerals. Lecture Notes in Earth Sciences. Berlin: Springer; 1991. p. 270–86.

    Google Scholar 

  28. Frenkel M. Surface acidity of montmorillonites. Clay Clay Miner. 1974;22(5–6):435–41.

    Article  CAS  Google Scholar 

  29. Rupert JP, Granquist WT, Pinnavaia TJ. Catalytic properties of clay minerals. In: Newman ACD, editor. Chemistry of clays and clay minerals. New York: Longman Scientific and Technical; 1987. p. 275–319.

    Google Scholar 

  30. Varma RS. Clay and clay-supported reagents in organic synthesis. Tetrahedron. 2002;58(7):1235–55.

    Article  CAS  Google Scholar 

  31. Reddy CR, Nagendrappa G, Jai Prakash BS. Surface acidity study of Mn+-montmorillonite clay catalysts by FT-IR spectroscopy: correlation with esterification activity. Catal Commun. 2007;8(3):241–6.

    Article  CAS  Google Scholar 

  32. Tyagi B, Chudasama CD, Jasra RV. Characterization of surface acidity of an acid montmorillonite activated with hydrothermal, ultrasonic and microwave techniques. Appl Clay Sci. 2006;31(1–2):16–28.

    Article  CAS  Google Scholar 

  33. Rong TJ, Xiao JK. The catalytic cracking activity of the kaolin-group minerals. Mater Lett. 2002;57(2):297–301.

    Article  CAS  Google Scholar 

  34. Heller-Kallai L. Thermally modified clay minerals. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Amsterdam: Elsevier; 2006. p. 289–308.

    Chapter  Google Scholar 

  35. Almon W, Johns W. Petroleum forming reactions: the mechanism and rate of clay catalyzed fatty acid decarboxylation. In: Campos R, Goni J, editors. Advances in organic geochemistry. 1975; Enadimsa: Madrid; 1977. p. 157–72.

  36. Johns WD. Clay mineral catalysis and petroleum generation. Annu Rev Earth Planet Sci. 1979;7:183–98.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (Grant No. 2012CB214704-01), the National Natural Science Foundation of China (Grant No. 41272059), and the National S&T Major Project of China (Grant No. 2011ZX05008-002-21). This is a contribution (No. IS1592) from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 605 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Yuan, P., Liu, D. et al. Effects of solid acidity of clay minerals on the thermal decomposition of 12-aminolauric acid. J Therm Anal Calorim 114, 125–130 (2013). https://doi.org/10.1007/s10973-012-2887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2887-0

Keywords

Navigation