Skip to main content
Log in

Thermodynamic investigations of uranium-rich binary and ternary alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Uranium–zirconium, uranium niobium, and uranium–zirconium–niobium alloys were synthesized by the arc melting technique and their phase transition temperatures were determined using a high temperature calorimeter. Heat capacities of U–7 wt%Zr, U–7 wt%Nb, U–5 wt%Zr–2 wt%Nb, U–3.5 wt%Nb–3.5 wt%Zr, and U–2 wt%Zr–5 wt%Nb were measured using a differential scanning calorimeter in the temperature range 303–921 K. A set of self-consistent thermodynamic functions such as entropy, enthalpy, and Gibbs energy function data for these binary and ternary alloys were reported for the first time using heat capacity data obtained in this study and required literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee CB, Mizuno T, Delage F, Somers J. Metallic fuels for advanced reactors. J Nucl Mater. 2009;392:139–50.

    Article  Google Scholar 

  2. Riyas A, Mohanakrishnan P. Studies on physics parameters of metal (U–Pu–Zr) fuelled FBR cores. Ann Nucl Energy. 2008;35:87–92.

    Article  CAS  Google Scholar 

  3. Meyer MK, Hofman GL, Wiencek TC, Hayes SL, Snelgrove JL. Irradiation behavior of U–Nb–Zr alloy dispersed in aluminum. J Nucl Mater. 2001;299:175–9.

    Article  CAS  Google Scholar 

  4. Heraud FG, Guillaumint J. Transition phase formation in U–7.5%Nb–2.5 Zr alloy. Acta Metallur. 1973;21:1243–52.

    Article  Google Scholar 

  5. Savchenko A, Vatulin A, Konovalov I, Morozov A, Sorokin V, Maranchak S. Fuel of novel generation for PWR and as alternative to MOX fue. Energy Convers Manage. 2010;51:1826–33.

    Article  CAS  Google Scholar 

  6. Lagerberg G. Phase transformations in a uranium–zirconium alloy containing 2 weight per cent zirconium. J Nucl Mater. 1963;9:261–76.

    Article  Google Scholar 

  7. Ogawa T, Ogata T, Itoh A, Akabori M, Miyanishi H, Sekino H, Nishi M, Shikawa A. Irradiation behavior of microspheres of U–Zr alloys. J Alloy Compd. 1998;12:670–5.

    Article  Google Scholar 

  8. Sheldon RI, Peterson DE. U–Zr phase diagram. In: Massalski TB, editor. Binary alloy phase diagrams, vol II. Metals Park: American Society of Metals, 1986. p 2150.

  9. Koike J, Kassner ME, Tate RE, Rosen RS. The Nb–U (niobium–uranium) system. J Phase Equilib. 1998;19:253–60.

    Article  CAS  Google Scholar 

  10. Dwight AE, Mueller MH. Constitution of the uranium-rich U–Nb and U–Nb–Zr systems. Argonne National Laboratory Report, ANL-5581; 1957.

  11. Peterson CAW, Vandervoort R. Recent observations of phase transformations in a U–Nb–Zr alloy. University of California, Lawrence Radiation Laboratory, Livermore Report UCRL-7869; 1964.

  12. Ghoshal K, Kutty TRG, Mishra S, Kumar A. Creep studies on U–7%Zr, U–7%Nb and U rich U–Nb–Zr alloys. J Nucl Mater. 2013;432:20–2.

    Article  CAS  Google Scholar 

  13. Williams RO. Stability of the body-centered cubic gamma phase in the uranium–zirconium-niobium system. J Nucl Mater. 1979;82:184–92.

    Article  CAS  Google Scholar 

  14. Villars P, Prince A, Okamoto H. Hand book of ternary alloy system, vol 10. Materials Park: ASM International, The Materials Information Society. 2009.

  15. Dash S, Parida SC, Singh Z, Sen BK, Venugopal V. Thermodynamic investigations of ThO2–UO2 solid solutions. J Nucl Mater. 2009;393:267–81.

    Article  CAS  Google Scholar 

  16. Parida SC, Rakshit SK, Dash S, Singh Z, Sen BK, Venugopal V. Systems R–Fe–O (R = Ho, Er): thermodynamic properties of ternary oxides using differential scanning calorimetry and solid-state electrochemical cells. J Solid State Chem. 2006;179:2212–30.

    Article  CAS  Google Scholar 

  17. Rough FA. An evaluation on zirconium–uranium alloys, report no. BMI-1030. 16th ed. Metallurgy and ceramics (M-3679). Columbus: Battelle Memorial Institute; 1955.

  18. Bauer AA. An evaluation of the properties and behaviour of zirconium–uranium alloys, report no. BMI-1350. 15th ed. Metallurgy and ceramics (TID-4500). Columbus: Battelle Memorial Institute; 1959.

  19. Fedorov GB, Smirnov EA. Heat capacity of uranium–zirconium systems. Sov At Energy. 1968;25:795–7.

    Article  Google Scholar 

  20. Takahashi Y, Yamawaki M, Yamamoto K. Thermophysical properties of uranium–zirconium alloys. J Nucl Mater. 1988;154:141–4.

    Article  CAS  Google Scholar 

  21. Takahashi Y, Yamamoto K, Ohsato T, Shimada H, Terai T, Yamawaki M. Heat capacities of uranium–zirconium alloys from 300 to 1100 K. J Nucl Mater. 1989;167:147–51.

    Article  Google Scholar 

  22. Matsui T, Natsume T, Naito K. Heat capacity measurements of U0.80Zr0.20 and U0.80Mo0.20 alloys from room temperature to 1300 K. J Nucl Mater. 1989;167:152–9.

    Article  Google Scholar 

  23. Kaity S, Banerjee J, Nair MR, Ravi K, Dash S, Kutty TRG, Kumar A, Singh RP. Microstructural and thermophysical properties of U–6 wt%Zr alloy for fast reactor application. J Nucl Mater. 2012;427:1–11.

    Article  CAS  Google Scholar 

  24. Vambersky YuV, Udovsky AL, Ivanov OS. Investigation of thermodynamic properties of BCC solid solutions of uranium (II). The uranium–niobium system. J Nucl Mater. 1975;55:96–108.

    Article  Google Scholar 

  25. Zhang X, Wang X, Luo C. Thermodynamic calculation of U-based binary melts. Rare Met Mater Eng. 2009;38:603–6.

    CAS  Google Scholar 

  26. Drotning WD. Density and thermal expansion of liquid U–Nb alloys. High Temp High Press. 1982;14:253–8.

    CAS  Google Scholar 

  27. Barin I. Thermochemical data of pure substances. Weinheim (Federal Republic of Germany): Verlagsgesellschaft mbH; 1995.

    Book  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Shri S.G. Kulkarni, Head, the Product Development Division, and Shri Arun Kumar, Head, the Radiometallurgy Division, and Dr. K.L Ramakumar, Director, the Radiochemistry and Isotope Group, for their keen interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smruti Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, S., Ghoshal, K. & Kutty, T.R.G. Thermodynamic investigations of uranium-rich binary and ternary alloys. J Therm Anal Calorim 112, 179–185 (2013). https://doi.org/10.1007/s10973-012-2801-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2801-9

Keywords

Navigation