Skip to main content
Log in

Crystallization of novel poly(ε-caprolactone)-block-poly(propylene adipate) copolymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(ε-caprolactone)-block-poly(propylene adipate) (PCL-block-PPAd) copolymers were prepared using a combination of polycondensation and ring opening polymerization of ε-CL. 1H-NMR and 13C-NMR spectroscopy showed that the prepared copolymers were block. Also, the copolymer composition was calculated from NMR spectra and was found similar to the feeding ratio. The copolymers formed PCL crystals as was proved by WAXD. The crystallization rates and degree of crystallinity, measured from DSC crystallization experiments, decreased with PPAd content. The equilibrium melting points of PCL were estimated applying the Hoffmann–Weeks method and the observed melting point depression was analyzed using the Nishi–Wang equation which showed that there is some miscibility of the copolymer segments. Isothermal crystallization experiments after self-nucleation were performed to distinguish the nucleation and crystal growth stages during isothermal crystallization. The secondary nucleation theory was then used and the obtained data for crystallization rates, estimated from the inverse of the crystallization half-times, were analyzed. The resulting values for nucleation constant K g, and also for the surface free energies and work of chain folding, increased with PPAd content due to topological restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Block C, Watzeels N, Rahier H, Van Mele B, Van Assche G. Rheology of nanocomposites: modelling and interpretation of nanofiller influence. J Therm Anal Calorim. 2011;105:731–6.

    Article  CAS  Google Scholar 

  2. Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology. Biomacromolecules. 2000;1:704–12.

    Article  CAS  Google Scholar 

  3. Bikiaris DN, Papageorgiou GZ, Giliopoulos DJ, Stergiou CA. Correlation between chemical and solid state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s. Macromol Biosci. 2008;8:728–40.

    Article  CAS  Google Scholar 

  4. Papadimitriou S, Bikiaris D. Novel self assembled core-shell nanoparticles based on crystalline-amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release. 2009;138:177–84.

    Article  CAS  Google Scholar 

  5. Bikiaris DN, Karavelidis V, Karavas E. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of Raloxifene HCl loaded nanoparticles. Molecules. 2009;14:2410–30.

    Article  CAS  Google Scholar 

  6. Seretoudi G, Bikiaris D, Panayiotou C. Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(ε-caprolactone) block copolymers. Polymer. 2002;43:5405–15.

    Article  CAS  Google Scholar 

  7. Hartlep H, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP. Study of two-stage processes for the microbial production of 1, 3-propanediol from glucose. Appl Microbiol Biotechnol. 2002;60:60–6.

    Article  CAS  Google Scholar 

  8. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN. Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enz Microbial Technol. 2004;35:648–53.

    Article  CAS  Google Scholar 

  9. Wang B, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, Ho RM. Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales. Polymer. 2001;42:7171–80.

    Article  CAS  Google Scholar 

  10. Liu Y, Söderqvist-Lindblad M, Ranucci E, Albertsson AC. New segmented poly(ester-urethane)s from renewable resources. J Polym Sci A. 2001;39:630–9.

    Article  CAS  Google Scholar 

  11. Papageorgiou GZ, Bikiaris DN. Synthesis, cocrystallization and enzymatic degradation of poly(butylene-co-propylene succinate) copolymers. Biomacromolecules. 2007;8:2437–49.

    Article  CAS  Google Scholar 

  12. Papageorgiou GZ, Vassiliou AA, Karavelidis VD, Koumbis A, Bikiaris DN. Novel poly(propylene terephthalate-co-succinate) random copolymers Synthesis, solid structure and enzymatic degradation study. Macromolecules. 2008;41:1675–84.

    Article  CAS  Google Scholar 

  13. Papadimitriou S, Bikiaris DN, Chrissafis K, Paraskevopoulos KM, Mourtas S. Synthesis characterization and thermal degradation mechanism of fast biodegradable PPSu/PCL copolymers. J Polym Sci A. 2007;45:5076–90.

    Article  CAS  Google Scholar 

  14. Papadimitriou SA, Papageorgiou GZ, Bikiaris D. Crystallization and enzymatic degradation of novel poly(ε-caprolactone-co-propylene succinate) copolymers. Eur Polym J. 2008;44:2356–66.

    Article  CAS  Google Scholar 

  15. Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev. 2002;54:39–99.

    Article  Google Scholar 

  16. Castillo RV, Müller AJ. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog Polym Sci. 2009;34(6):516–60.

    Article  CAS  Google Scholar 

  17. Hamley IW. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog Polym Sci. 2009;34:1161–210.

    Article  CAS  Google Scholar 

  18. Müller AJ, Balsamo V, Arnal ML. Nucleation and crystallization in diblock and triblock copolymers. Adv Polym Sci. 2005;190:1–63.

    Article  Google Scholar 

  19. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (A phase) investigated by differential scanning calorimetry. J Polym Sci B. 1993;31:1383–93.

    Article  CAS  Google Scholar 

  20. Müller AJ, Albuerne J, Marquez L, Raquez JM, Degée P, Dubois P, Hobbs J, Hamley IW. Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss. 2005;128:231–52.

    Article  Google Scholar 

  21. Boschetti-de-Fierro A, Lorenzo AT, Müller AJ, Schmalz H, Abetz V. Crystallization kinetics of PEO and PE in different triblock terpolymers: effect of microdomain geometry and confinement. Macromol Chem Phys. 2008;209:476–87.

    Article  CAS  Google Scholar 

  22. Endo M, Aida T, Onoue S. “Immortal” polymerization of ε-caprolactone initiated by aluminum porphyrin in the presence of alcohol. Macromolecules. 1987;20:2982–8.

    Article  CAS  Google Scholar 

  23. Kricheldorff HR, Berl M, Scharnagl N. Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules. 1988;21:286–93.

    Article  Google Scholar 

  24. Chen CH, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci. 2010;7:731–8.

    Article  Google Scholar 

  25. Chen CH, Lu HY, Chen M, Peng JS, Tsai CJ, Yang CS. Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate. J Appl Polym Sci. 2009;111:1433–9.

    Article  CAS  Google Scholar 

  26. Ko CY, Chen M, Wang HC, Tseng IM. Sequence distribution, crystallization and melting behavior of poly(ethylene terephthalate-co-trimethylene terephthalate) copolyesters. Polymer. 2005;46:8752–62.

    Article  CAS  Google Scholar 

  27. Barham PJ, Keller A, Otun EL, Holmes PA. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci. 1984;19:2781–94.

    Article  CAS  Google Scholar 

  28. Chatani Y, Okita Y, Tadoloro H, Yamashita Y. Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym J. 1970;1:555–62.

    Article  CAS  Google Scholar 

  29. Hoffman JD, Weeks JJ. Melting process and equilibrium melting temperature of polychlorotrifluoroethylene. Res Natl Bur Stand. 1962;66A:13–8.

    CAS  Google Scholar 

  30. Hoffman JD, Davis GT, Lauritzen JI Jr. In: Hannay B. N, editor. Treatise on solid state chemistry, vol. 3, Chap 7. New York: Plenum Press; 1976.

    Google Scholar 

  31. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules. 1975;8:909–15.

    Article  CAS  Google Scholar 

  32. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.

    Google Scholar 

  33. Van Krevelen DW, Hopfytzer PJ. Properties of polymers, correlations with chemical structure. Amsterdam: Elsevier; 1972.

    Google Scholar 

  34. Qiu Z, Ikehara T, Nishi T. Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer. 2003;44:2799–806.

    Article  CAS  Google Scholar 

  35. Ziska JJ, Barlow JW, Paul DR. Miscibility in PVC-polyester blend. Polymer. 1981;22:918–23.

    Article  CAS  Google Scholar 

  36. Avrami MJ. Kinetics of phase change. I: General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  37. Avrami MJ. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  38. Avrami MJ. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  39. Castillo RV, Müller AJ, Raquez JM, Dubois P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules. 2010;43:4149–60.

    Article  CAS  Google Scholar 

  40. Michell RM, Müller AJ, Deshayes G, Dubois P. Effect of sequence distribution on the isothermal crystallization kinetics and successive self-nucleation and annealing (SSA) behavior of poly(ε-caprolactone-co-ε-caprolactam) copolymers. Eur Polym J. 2010;46:1334–44.

    Article  CAS  Google Scholar 

  41. Hamley IW, Castelletto V, Castillo RV, Müller AJ, Martin CM, Pollet E, Dubois P. Crystallization in poly(l-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules. 2005;38:463–72.

    Article  CAS  Google Scholar 

  42. Achilias DS, Papageorgiou GZ, Karayannidis GP. Isothermal and nonisothermal crystallization kinetics of poly(propylene terephthalate). J Polym Sci B. 2004;42:3775–96.

    Article  CAS  Google Scholar 

  43. Supaphol P. Application of the Avrami, Tobin, Malkin, and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim Acta. 2001;370:37–48.

    Article  CAS  Google Scholar 

  44. Dangseeyun N, Shrimoaon P, Supaphol P, Nithitanakul M. Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochim Acta. 2004;409:63–77.

    Article  CAS  Google Scholar 

  45. Papageorgiou GZ, Bikiaris DN, Achilias DS. Effect of molecular weight on the cold-crystallization of biodegradable poly(ethylene succinate). Thermochim Acta. 2007;457:41–54.

    Article  CAS  Google Scholar 

  46. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.

    Article  CAS  Google Scholar 

  47. Chan TW, Isayev AI. Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci. 1994;34:461–71.

    Article  CAS  Google Scholar 

  48. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in Polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.

    Article  CAS  Google Scholar 

  49. Papageorgiou GZ, Achilias DS, Karayannidis GP. Estimation of thermal transitions in poly(ethylene naphthalate): experiments and modeling using isoconversional methods. Polymer. 2010;51:2565–75.

    Article  CAS  Google Scholar 

  50. Sorrentino L, Iannace S, Di Maio E, Acierno D. Isothermal crystallization kinetics of chain-extended PET. J Polym Sci B. 2005;43:1966–72.

    Article  CAS  Google Scholar 

  51. Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics and melting behaviour of the novel biodegradable polyesters poly(propylene azelate) and poly(propylene sebacate). Macromol Chem Phys. 2009;210:90–107.

    Article  CAS  Google Scholar 

  52. Immergut EH, Grulke EA, Abe A, Bloch DR. In: Brandrup J, editor. Polymer handbook. 4th ed. New York: Wiley; 1999.

    Google Scholar 

  53. Thomas DG, Stavely LAK. A study of the supercooling of drops of some molecular liquids. J Chem Soc. 1952;4569–77.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Bikiaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanaki, S.G., Papageorgiou, G.Z. & Bikiaris, D.N. Crystallization of novel poly(ε-caprolactone)-block-poly(propylene adipate) copolymers. J Therm Anal Calorim 108, 633–645 (2012). https://doi.org/10.1007/s10973-011-2155-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2155-8

Keywords

Navigation