Skip to main content
Log in

Study on the crystallization of poly(alkylene dicarboxylate)s derived from 1,9-nonanediol and mixtures with different ratios of azelaic acid and pimelic acid units

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyalkylene dicarboxylates derived from 1,9-nonanediol and mixtures with different ratios of pimelic acid and azelaic acid were synthesized by thermal polycondensation. All samples had a high degree of crystallinity although it was found to decrease with the comonomer content. Crystallization kinetics of the two homopolymers and the copolymer with the eutectic composition was studied by calorimetric and optical microscopy techniques. Similar Avrami parameters were determined for the three samples and a spherulitic growth with heterogeneous nucleation was deduced. Spherulites showed negative birefringence and a fibrillar or ringed texture depending on the sample. Furthermore, clear differences were found in the primary nucleation density, the spherulitic growth rate and even in the secondary nucleation constant deduced from the Lauritzen-Hoffman treatment. The three studied samples had a similar arrangement of molecular chains, and consequently their WAXD patterns showed the same strong reflections related to the molecular packing. SAXS data revealed that a lamellar insertion mechanism was characteristic for non-isothermal crystallization from the melt. In addition, significant differences were found between the crystal lamellar thicknesses of the homopolymer and copolymer samples. Diffraction and spectroscopic data suggested that the lamellar crystals of the eutectic copolymer were mainly constituted by azelate units whereas the pimelate units were preferentially located in the amorphous regions including the interlamellar amorphous layer associated with the chain folds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lligadas G, Ronda JC, Galià M, Cádiz V (2007) Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Biomacromolecules 8:686–692

    Article  CAS  Google Scholar 

  2. Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Article  CAS  Google Scholar 

  3. Hojabri L, Kong X, Narine SS (2010) Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources. Biomacromolecules 11:911–918

    Article  CAS  Google Scholar 

  4. Lligadas G, Ronda JC, Galià M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835

    Article  CAS  Google Scholar 

  5. Doi Y, Steinbüchel A (2002) Polyesters II – properties and chemical synthesis. Wiley-VCH, New York

    Google Scholar 

  6. Huang SJ (1985) Encyclopedia of polymer science and engineering, vol. 2. Wiley-Interscience, New York, p. 20

    Google Scholar 

  7. Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446

    Article  CAS  Google Scholar 

  8. Edlund E, Albertsson AC (1999) Novel Drug Delivery Microspheres from poly(1,5-dioxepan-2-one-co-L-lactide). J Polym Sci Part A: Polym Chem 37:1877–1884

    Article  CAS  Google Scholar 

  9. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5:169–181

    Article  CAS  Google Scholar 

  10. Kricheldorf HR, Kreiser-Saunders I, Jürgens C, Wolter D (1996) Polylactides - synthesis. characterization and medical application. Macromol Symp 103:85–102

    CAS  Google Scholar 

  11. Thombre AG, Cardinal JR (1990) Enciclopedia of Pharmaceutical Technology 2. New York: Marcel Dekker, pp 61.

  12. Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stab 59:209–214

    Article  CAS  Google Scholar 

  13. Shih Y-F, Wu T-M (2009) Enzymatic degradation kinetics of poly(butylene succinate)nanocomposites. J Polym Res 16:109–115

    Article  CAS  Google Scholar 

  14. Lai SM, Huang CK, Shen HF (2005) Preparation and Properties of Biodegradable Poly(butylene succinate)/Starch Blends. J Appl Polym Sci 97:257–264

    Article  CAS  Google Scholar 

  15. Fuller CS (1939) X-ray investigation of the decamethylene series of polyesters. J Am Chem Soc 61:2575–2580

    Article  CAS  Google Scholar 

  16. Kanamoto T, Tanaka K (1971) Growth and morphology of single crystals of linear aliphatic polyesters. J Polym Sci, Part A-2(9):2043–2060

    Google Scholar 

  17. Ueda AS, Chatani Y, Tadokoro H (1971) Structural studies of polyesters. IV. Molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate). Polym J 2:387–397

    Article  CAS  Google Scholar 

  18. Aylwin PA, Boyd RH (1984) Aliphatic polyesters as models for relaxation processes in crystalline polymers: 1 Characterization. Polymer 25:323–329

    Article  CAS  Google Scholar 

  19. Liau WB, Boyd RH (1990) Structure and packing in crystalline aliphatic polyesters. Macromolecules 23:1531–1539

    Article  CAS  Google Scholar 

  20. Brandrup J, Immergut H (1989) Polymer Handbook. Wiley, New York

    Google Scholar 

  21. Almontassir A, Gestí S, Franco L, Puiggalí J (2004) Molecular packing of polyesters derived from 1,4-butanediol and even aliphatic dicarboxylic acids. Macromolecules 37:5300–5309

    Article  CAS  Google Scholar 

  22. Gestí S, Almontassir A, Casas MT, Puiggalí J (2004) Molecular packing and crystalline morphologies of biodegradable poly(alkylene dicarboxylate)s derived from 1,6-hexanediol. Polymer 45:8845–8861

    Article  CAS  Google Scholar 

  23. Gestí S, Almontassir A, Casas MT, Puiggalí J (2006) Crystalline structure of poly(hexamethylene adipate). Study on the Morphology and the Enzymatic Degradation of Single Crystals Biomacromolecules 7:799–808

    Google Scholar 

  24. Gestí S, Casas MT, Puiggalí J (2007) Crystalline structure of poly(hexamethylene succinate) and single crystal degradation studies. Polymer 48:5088–5097

    Article  CAS  Google Scholar 

  25. Lu J-S, Chen M, Lu S-F, Chen C-H (2011) Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. J Polym Res 18:1527–1537

    Article  CAS  Google Scholar 

  26. Champetier G, Monnerie L (1969) Introduction à la chimie macromoléculaire. Masson et Cie, Paris

    Google Scholar 

  27. Allegra G, Bassi IW (1969) Isomorphism in synthetic macromolecular systems. Adv Polym Sci 6:549–574

    Article  CAS  Google Scholar 

  28. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y (1997) Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules 30:7403–7407

    Article  CAS  Google Scholar 

  29. George Z, Papageorgiou B, Dimitrios N (2007) Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 8:2437–2449

    Article  CAS  Google Scholar 

  30. Li X, Hong Z, Sun J, Geng Y, Huang Y, An H, et al. (2009) Identifying the phase behavior of biodegradable poly(hexamethylene succinate-co-hexamethylene adipate) copolymers with FTIR. J Phys Chem 113:2695–2704

    Article  CAS  Google Scholar 

  31. Li X, Sun J, Huang Y, Geng Y, Wang X, Ma Z, et al. (2008) Inducing new crystal structures through random copolymerization of biodegradable aliphatic polyester. Macromolecules 41:3162–3168

    Article  CAS  Google Scholar 

  32. Liang Z, Pan P, Zhu B, Dong T, Hua L, Inoue Y (2010) Crystalline phase of isomorphic poly(hexamethylene sebacate-co-hexamethylene adipate) copolyester: effects of comonomer composition and crystallization temperature. Macromolecules 43:2925–2932

    Article  CAS  Google Scholar 

  33. Liang Z, Pan P, Zhu B, Inoue Y (2011) Isomorphic crystallization of aliphatic copolyesters derived from 1,6-hexanediol: effect of the chemical structure of comonomer units on the extent of cocrystallization. Polymer 52:2667–2676

    Article  CAS  Google Scholar 

  34. Rueda DR, García-Gutiérrez MC, Nogales A, Capitán MJ, Ezquerra TA, Labrador A, Fraga E Beltrán D, Juanhuix J, Herranz JF, Bordas J (2006) Versatile wide angle diffraction setup for simultaneous wide and small angle x-ray scattering measurements with synchrotron radiation. Rev Sci Instrum 77, Art. No. 033904

  35. Rajkumar G, HA AL-K, Eakins F, Knupp C, Squire JM (2007) The CCP13 FibreFix program suite: semi-automated analysis of diffraction patterns from non-crystalline materials. J Appl Crystallogr 40:178–184

    Article  CAS  Google Scholar 

  36. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J Polym Sci Part A: Polym Chem 40:4141–4157

    Article  CAS  Google Scholar 

  37. Pamula E, Blazewicz M, Paluszkiewicz P, Dobrzynski (2001) FTIR study of degradation products of aliphatic polyesters–carbon fibres composites. J Mol Struct 596:69–75

    Article  CAS  Google Scholar 

  38. Avrami M (1939) Kinetics of phase change. I General Theory J Chem Phys 7:1103–1120

    CAS  Google Scholar 

  39. Avrami M (1940) Kinetics of phase change. II Transformation-Time Relations for Random Distribution of Nuclei J Chem Phys 8:212–224

    CAS  Google Scholar 

  40. Hoffman JD, Weeks JJ (1962) Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys 37:1723–1741

    Article  CAS  Google Scholar 

  41. Lauritzen JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercooling. J Appl Phys 44:4340–4352

    Article  CAS  Google Scholar 

  42. Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur Phys J E 3:165–183

    Article  CAS  Google Scholar 

  43. Muthukumar M (2000) Commentary on theories of polymer crystallization. Eur Phys J 3:199–202

    CAS  Google Scholar 

  44. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  45. Suzuki T, Kovacs A (1970) Temperature dependence of spherulitic growth rate of isotactic polystyrene J. Polym J 1:82–100

    Article  CAS  Google Scholar 

  46. Vonk CG, Kortleve G (1967) X-ray small-angle scattering of bulk polyethylene. Kolloid Z Z Polym 220:19–24

    Article  CAS  Google Scholar 

  47. Vonk CG (1975) A general computer program for the processing of small-angle x-ray scattering data. J Appl Cryst 8:340–341

    Article  Google Scholar 

  48. Hsiao BS, Gardner KH, Wu DQ, Chu B (1993) Time-resolved x-ray study of poly(aryl ether ether ketone) crystallization and melting behaviour: 1. Crystallization Polymer 34:3986–3995

    CAS  Google Scholar 

  49. Ikada Y, Jamshida K, Tsuji H, Hyoan SH (1987) Maltopentaose- and maltoheptaose-carrying styrene macromers and their homopolymers. Macromolecules 20:906–908

    Article  Google Scholar 

  50. Kruger KN, Zachmann HG (1993) Investigation of the melting behavior of poly(aryl ether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation. Macromolecules 26:5202–5208

    Article  Google Scholar 

  51. Hsiao BS, Wang Z, Yeh F, Yan G, Sheth KC (1999) Time-resolved x-ray studies of structure development in poly(butylene terephthalate) during isothermal crystallization. Polymer 40:3515–3523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are in debt to supports from MINECO and FEDER (MAT2012-36205) and the Generalitat de Catalunya (2009SGR1208). Diffraction experiments were performed at NCD beamline at ALBA Synchrotron with the collaboration of ALBA staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Puiggalí.

Electronic supplementary material

ESM 1

(DOCX 1.19 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, A., Franco, L. & Puiggalí, J. Study on the crystallization of poly(alkylene dicarboxylate)s derived from 1,9-nonanediol and mixtures with different ratios of azelaic acid and pimelic acid units. J Polym Res 23, 12 (2016). https://doi.org/10.1007/s10965-015-0902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0902-4

Keywords

Navigation