Skip to main content
Log in

Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The effect of the architecture of poly(ethylene glycol)/poly(L-lactide) (PEG/PLLA) block copolymers on the non-isothermal crystallization behaviors of PLLA blocks was investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). 1-Arm MPEG-b-PLLA and 4-arm PEG-b-PLLA (4PEG-b-PLLA) were synthesized by the ring-opening polymerization of Llactide in the presence of poly(ethylene glycol) methyl ether (MPEG) and 4-arm poly(ethylene glycol) (4PEG). 4-Arm PLLA-b-MPEG (4PLLA-b-PEG) was synthesized by coupling 4-arm PLLA and MPEG. The WAXD results indicated that the crystalline structure of PLLA blocks did not alter due to the different chain architectures. The average values of Avrami index (\(\bar{n}\)) were all above 4, which indicated that the nucleation mechanism of PLLA blocks was heterogeneous nucleation, regardless of the architectures. The overall crystallization rates were decreased markedly as following: MPEG-b-PLLA > 4PEG-b-PLLA > 4PLLA-b-PEG, ascribed to the different confinement by PEG blocks and to the steric hindrance of chain architectures. Therefore, the crystallization of PLLA blocks became more difficult and the crystallization activation energy of the PLLA blocks increased due to the confinement of chain architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): Research, development and industrialization. Biotechnol J. 2010, 5, 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  2. Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356.

    Article  CAS  Google Scholar 

  3. Nampoothiri, K. M.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010,101, 8493–8501.

    Article  CAS  Google Scholar 

  4. Shi, X. D.; Sun, P. J.; Gan Z. H. Preparation of porous polylactide microspheres and their application in tissue engineering. Chinese J. Polym. Sci. 2018, 36, 712–719.

    Article  CAS  Google Scholar 

  5. Sun, Y.; He, C. Biodegradable “core-shell” rubber nanoparticles and their toughening of poly(lactides). Macromolecules 2013, 46, 9625–9633.

    Article  CAS  Google Scholar 

  6. Huang, S.; Sun, H.; Sun, J.; Li, G.; Chen, X. Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(Llactide) copolymer. Mater. Lett. 2014, 133, 87–90.

    Article  CAS  Google Scholar 

  7. Liu, Y.; Sun, J.; Bian, X.; Feng, L.; Xiang, S.; Sun, B.; Chen, Z.; Li, G.; Chen, X. Melt stereocomplexation from poly(L-lactic acid) and poly(D-lactic acid) with different optical purity. Polym. Degrad. Stab. 2013, 98, 844–852.

    Article  CAS  Google Scholar 

  8. Sun, C. B.; Mao, H. D.; Chen, F.; Fu, Q. Preparation of polylactide composite with excellent flame retardance and improved mechanical properties. Chinese J. Polym. Sci. 2018, 36, 1385–1393.

    Article  CAS  Google Scholar 

  9. Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett. 2015, 155, 94–96.

    Article  CAS  Google Scholar 

  10. Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-bbutylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003, 4, 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  11. Peponi, L. Marcos-Fernández, A. Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 2012, 53, 4561–4568.

    Article  CAS  Google Scholar 

  12. Casas, M. T.; Puiggalí, J.; Raquez, J. M.; Dubois, P.; Córdova, M. E.; Müller, A. J. Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Polymer 2011, 52, 5166–5177.

    Article  CAS  Google Scholar 

  13. Cerrai, P.; Tricoli, M.; Lelli, L.; Guerra, G. D.; Delguerra, R. S.; Cascone, M. G.; Giusti, P. Block-copolymers of L-lactide and poly(ethylene glycol) for biomedical applications. J. Mater. Sci-Mater. M. 1994, 5, 308–313.

    Article  CAS  Google Scholar 

  14. Kim, K. S.; Chung, S.; Chin, I. J.; Kim, M. N.; Yoon, J. S. Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol)-poly(L-lactide) block copolymers. J. Appl. Polym. Sci. 1999, 72, 341–348.

    Article  CAS  Google Scholar 

  15. Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Feng, L.; Xiang, S.; Sun, B.; Chen, Z.; Li, G.; Chen, X. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-è-PEG-è-PDLA. Polym. Degrad. Stab. 2014, 101, 10–17.

    Article  CAS  Google Scholar 

  16. Ren, K.; Cheng, Y.; He, C.; Xiao, C.; Li, G.; Chen, X. The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene glycol)-block-polypeptide copolymers. Polymer 2013, 54, 2466–2472.

    Article  CAS  Google Scholar 

  17. Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Russell, T. P.; Lee, J. H.; Jho, J. Y. A Morphological study of a semicrystalline poly(L-lactic acid-b-ethylene oxide-b-L-lactic acid) triblock copolymer. Macromolecules 2005, 38, 104–109.

    Article  CAS  Google Scholar 

  18. Yang, J.; Liang, Y.; Luo, J.; Zhao, C.; Han, C. C. Multilength scale studies of the confined crystallization in poly(L-lactide)-block-poly(ethylene glycol) copolymer. Macromolecules 2012, 45, 4254–4261.

    Article  CAS  Google Scholar 

  19. Sun, J.; Hong, Z.; Yang, L.; Tang, Z.; Chen, X.; Jing, X. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer. Polymer 2004, 45, 5969–5977.

    Article  CAS  Google Scholar 

  20. Sun, J. R.; Chen, X. S.; He, C. L.; Jing, X. B. Morphology and structure of single crystals of poly(ethylene glycol)-poly(ecaprolactone) diblock copolymers. Macromolecules 2006, 39, 3717–3719.

    Article  CAS  Google Scholar 

  21. Zhang, J. M.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. PLLA mesophase and its phase transition behavior in the PLLA-PEGPLLA copolymer as revealed by infrared spectroscopy. Macromolecules 2010, 43, 4240–4246.

    Article  CAS  Google Scholar 

  22. Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: Effect of the different architectures and molecular weights. Polymer 2015, 62, 70–76.

    Article  CAS  Google Scholar 

  23. Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3215–3226.

    Article  CAS  Google Scholar 

  24. Zhou, D.; Sun, J.; Shao, J.; Bian, X.; Huang, S.; Li, G.; Chen, X. Unusual crystallization and melting behavior induced by microphase separation in MPEG-b-PLLA diblock copolymer. Polymer 2015, 80, 123–129.

    Article  CAS  Google Scholar 

  25. Zhao, W.; Li, C. Y.; Wu, C. J.; Liu, X. L.; Mou, Z. H.; Yao, C. G.; Cui, D. M. Synthesis of ultraviolet absorption polylactide via immortal polymerization of rac-lactide initiated by a salanyttrium catalyst. Chinese J. Polym. Sci. 2018, 36,202–206.

    Google Scholar 

  26. Yao, F.; Bai, Y.; Zhou, Y.; Liu, C.; Wang, H.; Yao, K. Synthesis and characterization of multiblock copolymers based on Llactic acid, citric acid, and poly(ethylene glycol). J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2073–2081.

    Article  CAS  Google Scholar 

  27. Feng, L. D.; Sun, B.; Bian, X. C.; Chen, Z. M.; Chen, X. S. Determination of D-lactate content in poly(lactic acid) using polarimetry. Polym. Test. 2010, 29, 771–776.

    Article  CAS  Google Scholar 

  28. Tsuji, H.; Matsumura, N.; Arakawa, Y. Stereocomplex crystallization and homocrystallization of star-shaped four-armed stereo diblock poly(lactide)s with different L-lactyl unit contents: Isothermal crystallization from the melt. J. Phys. Chem. B 2016, 120, 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  29. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence. Macromolecules 2007, 40, 6898–6905.

    Article  CAS  Google Scholar 

  30. Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 2008, 41, 4296–4304.

    Article  CAS  Google Scholar 

  31. Shao, J.; Sun, J.; Bian, X.; Zhou, Y.; Li, G.; Chen, X. The formation and transition behaviors of the mesophase in poly(Dlactide)/ poly(L-lactide) blends with low molecular weights. CrystEngComm 2013, 15, 6469–6476.

    Article  CAS  Google Scholar 

  32. Shao, J.; Xiang, S.; Bian, X.; Sun, J.; Li, G.; Chen, X. Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind. Eng. Chem. Res. 2015, 54, 2246–2253.

    Article  CAS  Google Scholar 

  33. Jeziorny, A. Parameters characterizing the kinetics of the nonisothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1144.

    Article  CAS  Google Scholar 

  34. Liu, T.; Mo, Z.; Zhang, H. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J. Appl. Polym. Sci. 1998, 67, 815–821.

    Article  CAS  Google Scholar 

  35. Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 2006, 27,1515–1532.

    Google Scholar 

  36. Vyazovkin, S.; Dollimore, D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Model. 1996, 36, 42–45.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51303176, 51873209, 51573178, and 51773194) and the National Key Research and Development Program of China (No. 2016YFB0302500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao Li or Xue-Si Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Zhou, DD., Feng, LD. et al. Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers. Chin J Polym Sci 37, 258–267 (2019). https://doi.org/10.1007/s10118-019-2202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2202-7

Keywords

Navigation