Skip to main content
Log in

Sulfation behavior of white mud from paper manufacture as SO2 sorbent at fluidized bed combustion temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The calcination characteristics, sulfation conversion, and sulfation kinetics of a white mud from paper manufacture at fluidized bed combustion temperatures were investigated in a thermogravimetric analyzer. Also, the comparison between the white mud and the limestone in sulfation behavior and microstructure was made. Although the white mud and the limestone both contain lots of CaCO3, they are different in the alkali metal ions content and microstructure. It results in a marked difference in sulfation behavior between the white mud and the limestone. The CaO derived from white mud achieves the maximum sulfation conversion of 83% at about 940 °C which is 1.7 times higher than that derived from limestone at about 880 °C. The shrinking unreacted core model is appropriate to analyze the sulfation kinetics of the white mud. The chemical reaction activation energy E a and the activation energy for product layer diffusion E p for the sulfation of the white mud are 44.94 and 55.61 kJ mol−1, respectively. E p for the limestone is 2.8 times greater than that for the white mud. The calcined white mud possesses higher surface area than the calcined limestone. Moreover, the calcined white mud has more abundant pores in 4–24 nm range which is almost optimum pore size for sulfation. It indicates that the microstructure of the white mud is beneficial for SO2 removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Livraghi S, Paganini MC, Giamello E. SO2 reactivity on the MgO and CaO surfaces: a CW-EPR study of oxo-sulphurradical anions. J Mol Catal. 2010;322:39–44.

    Article  CAS  Google Scholar 

  2. Sakizci M, Alver BE, Yorukogullari E. Thermal and SO2 adsorption properties of some lays from Turkey. J Therm Anal Calorim. 2011;103:435–41.

    Article  CAS  Google Scholar 

  3. Trikkel A, Zevenhoven R, Kuusik R. Modelling SO2 capture by Estonian limestones and dolomites. Proc Est Acad Sci Chem. 2000;49:53–70.

    CAS  Google Scholar 

  4. Crnkovic PM, Milioli FE, Pagliuso JD. Kinetics study of the SO2 sorption by Brazilian dolomite using thermogravimetry. Thermochim Acta. 2006;447:161–6.

    Article  CAS  Google Scholar 

  5. Anthony EJ, Bulewicz EM, Jia L. Reactivation of limestone sorbents in FBC for SO2. Prog Energy Combust Sci. 2007;33:171–210.

    Article  CAS  Google Scholar 

  6. Trikkel A, Keelmann M, Kaljuvee T. CO2 and SO2 uptake by oil shale ashes: effect of pre-treatment on kinetics. J Therm Anal Calorim. 2010;99:763–9.

    Article  CAS  Google Scholar 

  7. Kaljuvee T, Toom M, Trikkel A, Kuusik R. Reactivity of oil shale ashes in the binding of SO2. J Therm Anal Calorim. 2007;88:51–8.

    Article  CAS  Google Scholar 

  8. Kaljuvee T, Trikkel A, Kuusik R. Decarbonization of natural lime-containing materials and reactivity of calcined products towards SO2 and CO2. J Therm Anal Calorim. 2001;64:1229–40.

    Article  CAS  Google Scholar 

  9. Robertson A, Goidich S, Fan Z. 1300°F 800 MWe USC CFB boiler design study. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xian, China; 2009, p. 125–31.

  10. Liu W, Yang J, Xiao B. Review on treatment and utilization of bauxite residues in China. Int J Miner Process. 2009;93:220–31.

    Article  CAS  Google Scholar 

  11. Gorai B, Jana RK. Premchand, Characteristics and utilization of copper slag-review. Resour Conserv Recycl. 2003;39:299–313.

    Article  Google Scholar 

  12. Wang SB, Ang HM, Tade MO. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere. 2008;72:1621–35.

    Article  CAS  Google Scholar 

  13. Yamada K, Harato F. SO2 removal from waste-gas by red mud slurry pilot test and operation results of the plant. Kagaku Kogaku Ronbun. 1982;8:32–8.

    Article  CAS  Google Scholar 

  14. Fan HL, Li CH, Xie KC. Testing of iron oxide sorbent for high-temperature coal gas desulfurization. Energy Sour. 2005;27:245–50.

    Article  CAS  Google Scholar 

  15. Cheng J, Zhou JH, Liu JZ, Cao XY, Cen KF. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes. Energy Fuels. 2009;23:2506–16.

    Article  CAS  Google Scholar 

  16. Lin S, Luo HJ. Preparation of soil nutrient amendment using white mud produced in ammonia-soda process and its environmental assessment. Trans Nonferrous Met Soc China. 2009;19:1383–8.

    Article  Google Scholar 

  17. Zhu MX, Lee L, Wang HH, Wang Z. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater. 2007;149:735–41.

    Article  CAS  Google Scholar 

  18. Laursen K, Grace JR, Lim CJ. Enhancement of the sulfur capture capacity of limestones by addition of the Na2CO3 and NaCl. Environ Sci Technol. 2001;35:4384–9.

    Article  CAS  Google Scholar 

  19. Laursen K, Kern AA, Grace JR, Lim CJ. Characterization of the enhancement effect of Na2CO3 on the sulfur capture capacity of limestones. Environ Sci Technol. 2003;37:3709–15.

    Article  CAS  Google Scholar 

  20. Siagi ZO, Mbarawa M, Mohamed AR, Lee KT, Dahlan I. The effects of limestone type on the sulphur capture of slaked lime. Fuel. 2007;86:2660–6.

    Article  CAS  Google Scholar 

  21. Stanmore BR, Gilot P. Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Process Technol. 2005;86:1707–43.

    Article  CAS  Google Scholar 

  22. Anthony EJ, Granatstein DL. Sulfation phenomena in fluidized bed combustion systems. Prog Energy Combust Sci. 2001;27:215–36.

    Article  CAS  Google Scholar 

  23. Li RY, Qi HY, You CF, Xu XC. Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. Fuel. 2007;86:785–92.

    Article  CAS  Google Scholar 

  24. Wu ZH, Kou P, Yu ZW. The modulation of desulphurization properties of calcium oxide by alkali carbonates. J Therm Anal Calorim. 2002;67:745–50.

    Article  CAS  Google Scholar 

  25. Mohamed AR. Kinetic model for the reaction between SO2 and coal fly ash/CaO/CaSO4 sorbent. J Therm Anal Calorim. 2005;79:691–5.

    Article  Google Scholar 

  26. Chrissafis K. Multicyclic study on the carbonation of CaO using different limestones. J Therm Anal Calorim. 2007;89:525–9.

    Article  CAS  Google Scholar 

  27. Chrissafis K, Paraskevopoulos KM. The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. J Therm Anal Calorim. 2005;81:463–8.

    Article  CAS  Google Scholar 

  28. Chrissafis K, Dagounaki C, Paraskevopoulos KM. The effects of procedural variables on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. Thermochim Acta. 2005;428:193–8.

    Article  CAS  Google Scholar 

  29. Wieczorek-Ciurowa K. Peculiarities of interactions in the CaCO3/CaO-SO2/SO3-air system. J Therm Anal Calorim. 1998;53:649–58.

    Article  CAS  Google Scholar 

  30. Laursen K, Duo W, Grace JR, Lim CJ. Sulfation and reactivation characteristics of nine limestones. Fuel. 2000;79:153–63.

    Article  CAS  Google Scholar 

  31. Mahuli SK, Agnihotri R, Chauk S, Ghosh-Dastidar A, Wei SH, Fan LS. Pore-structure optimization of calcium carbonate for enhanced sulfation. AIChE J. 1997;43:2323–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Research Fund for the Doctoral Program of Higher Education of China (20100131120055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Sun, R., Zhao, J. et al. Sulfation behavior of white mud from paper manufacture as SO2 sorbent at fluidized bed combustion temperatures. J Therm Anal Calorim 107, 241–248 (2012). https://doi.org/10.1007/s10973-011-1537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1537-2

Keywords

Navigation