Skip to main content
Log in

Multicyclic study on the carbonation of CaO using different limestones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Different samples of limestones, with small differences in their stoichiometry, have been studied comparatively. The carbonation reaction has been studied for a large area of isothermal temperatures. The conditions for the multicyclic experiments of calcination/carbonation were: isothermal temperature 670°C, heating time 60 min and carrier gas CO2. The final carbonation conversion depends mainly on the isothermal temperature of the carbonation reaction and the heating time. The final temperature of the calcination reaction depends on the percentage of CaO that it has not been conversed to CaCO3 in the repeated carbonation experiments. The quantity of CaO that has not been carbonated, in the same sample, affects the values of the coefficients of the kinetic model that fit the calcination reaction. In the multicyclic experiments the carbonation conversion for two of the four studied samples, was high enough in comparison to other samples of calcite. At sample A the reduction of the carbonation conversion during the first five cycles is less than it is at other samples from the literature. Under the above experimental conditions — isothermal temperature and heating time — specific samples consisted mainly of calcite can absorb larger quantities of CO2 than samples consisted mainly of dolomite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gupta and L.-S. Fan, Ind. Eng. Chem. Res., 41 (2002) 4035.

    Article  CAS  Google Scholar 

  2. J. K. Kim, K. S. Yoo, T. J. Park, B. H. Song, L. G. Lee, J. H. Kim and C. Han, J. Korean Inst. Chem. Eng., 40 (2002) 582.

    CAS  Google Scholar 

  3. K. Kyaw, M. Kubota, F. Watanabe, H. Matsuda and M. Hasatani, J. Chem. Eng. Jpn., 31 (1998) 281.

    Article  CAS  Google Scholar 

  4. K. Kyaw, H. Matsuda and M. Hasatani, J. Chem. Eng. Jpn., 29 (1996) 119.

    Article  CAS  Google Scholar 

  5. Y. Kato, M. Yamada, T. Kanie and Y. Yoshizawa, Nucl. Eng. Design. 210 (2001) 1.

    Article  CAS  Google Scholar 

  6. Y. Kato, D. Saku, N. Harada and Y. Yoshizawa, J. Chem. Eng. Jpn., 30 (1997) 1013.

    Article  CAS  Google Scholar 

  7. G. Li, T. Kanie, Y. Kato and Y. Yoshizawa, J. Chem. Eng. Jpn., 35 (2002) 886.

    Article  CAS  Google Scholar 

  8. M. Aihara, T. Nagai, J. Matsusita, Y. Negishi and H. Ohya, Appl. Energy, 69 (2001) 225.

    Article  CAS  Google Scholar 

  9. S. Y. Lin, Y. Suzuki, H. Hatano and M. Harada, Energy Convers. Manage., 43 (2002) 1283.

    Article  CAS  Google Scholar 

  10. D. K. Lee, I. H. Baek and W. L. Yoon, Chem. Eng. Sci., 59 (2004) 931.

    Article  CAS  Google Scholar 

  11. T. Kaljuvee, A. Trikkel and R. Kuusik, J. Therm. Anal. Cal., 64 (2001) 1229.

    Article  CAS  Google Scholar 

  12. D. Mess, A. F. Sarofim and J. P. Longwell, Energy Fuels, 13 (1999) 999.

    Article  CAS  Google Scholar 

  13. D. R. Glasson, J. Appl. Chem., 11 (1961) 201.

    Article  CAS  Google Scholar 

  14. A. B. Fuertes, D. Alvarez, F. Rubiera, J. J. Pis and G. Marban, Chem. Eng. Commun., 109 (1991) 73.

    Article  CAS  Google Scholar 

  15. R. Borgwardt, Chem. Eng. Sci., 44 (1989) 53.

    Article  CAS  Google Scholar 

  16. D. Alvarez and J. Carlos Abanades, Energy Fuels, 19 (2005) 270.

    Article  CAS  Google Scholar 

  17. D. Cazorla-Amoros, J. P. Joly, A. Linares-Solano, A. Marcilla-Gomis and C. Salinas-Martinez de Lecea, J. Phys. Chem., 95 (1991) 6611.

    Article  CAS  Google Scholar 

  18. G. P. Curran, C. E. Fink and E. Gorin, Adv. Chem. Ser., 69 (1967) 205.

    Article  Google Scholar 

  19. J. Carlos Abanades and D. Alvarez, Energy Fuels, 17 (2003) 308.

    Article  CAS  Google Scholar 

  20. R. Barker, J. Appl. Chem. Biotechnol., 23 (1973) 733.

    Article  CAS  Google Scholar 

  21. J. C. Abanades, Chem. Eng. J., 90 (2002) 303.

    Article  CAS  Google Scholar 

  22. K. Kuramoto, S. Fujimoto, A. Moritá, S. Shibano, Y. Suzuki, H. Hatano, L. Shi-Ying, M. Harada and T. Takarada, Ind. Eng. Chem. Res., 42 (2003) 975.

    Article  CAS  Google Scholar 

  23. A. Silaban and D. P. Harrison, Chem. Eng. Commun., 137 (1995) 177.

    Article  CAS  Google Scholar 

  24. M. V. Iyer, H. Gupta, B. B. Sakadjian and L.-S. Fan, Ind. Eng. Chem. Res., 43 (2004) 3939.

    Article  CAS  Google Scholar 

  25. T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki and K. Tejima, Trans. IChemE, 77(part A) (1999) 62.

    Article  CAS  Google Scholar 

  26. S. K. Bhatia and D. D. Perlmutter, AIChE J., 29 (1983) 79.

    Article  CAS  Google Scholar 

  27. K. Chrissafis, C. Dagounaki and K. M. Paraskevopoulos, Thermochim. Acta, 428 (2005) 193.

    Article  CAS  Google Scholar 

  28. K. Chrissafis and K. M. Paraskevopoulos, J. Therm. Anal. Cal., 81 (2005) 463.

    Article  CAS  Google Scholar 

  29. C. Dagounaki, Mineralogical and geochemical characteristics of carbonate rocks from Kozani areas, Macedonia, Greece, and investigation of their capability for application in industry. MSc Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece 2002, p. 108.

    Google Scholar 

  30. C. Dagounaki, K. Chrissafis, A. Kassoli-Fournaraki, A. Tsirambides, C. Sikalidis and K. M. Paraskevopoulos, J. Therm. Anal. Cal., 78 (2004) 295.

    Article  CAS  Google Scholar 

  31. A. Silaban, M. Narcida and D. P. Harrison, Chem. Eng. Commun., 146 (1996) 149.

    Article  CAS  Google Scholar 

  32. E. Loste, R. M. Wilson, R. Seshadri and F. C. Meldrum, J. Cryst. Growth, 254 (2003) 206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrissafis, K. Multicyclic study on the carbonation of CaO using different limestones. J Therm Anal Calorim 89, 525–529 (2007). https://doi.org/10.1007/s10973-006-7678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7678-z

Keywords

Navigation