Skip to main content
Log in

Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocomposites of poly(l-lactic acid) (PLLA) containing 2.5 wt% of fumed silica nanoparticles (SiO2) and organically modified montmorillonite (OMMT) were prepared by solved evaporation method. From SEM micrographs it was observed that both nanoparticles were well dispersed into PLLA matrix. All nanocomposites exhibited higher mechanical properties compared to neat PLLA, except elongation at break, indicating that nanoparticles can act as efficient reinforcing agents. Nanoparticles affect, also, the thermal properties of PLLA and especially the crystallization rate, which in all nanocomposites is faster than that of neat PLLA. From the thermogravimetric curves it can be seen that neat PLLA nanocomposites present a relatively better thermostability than PLLA, and this was also verified from the calculation of activation energy (E). From the variation of E with increasing degree of conversion it was found that PLLA/nanocomposites decomposition takes place with a complex reaction mechanism, with the participation of two different mechanisms. The combination of models, nth order and nth order with autocatalysis (Fn–Cn), for PLLA and PLLA/OMMT as well as the combination of Fn–Fn for PLLA/SiO2 give the better results. For the PLLA/OMMT the values of the E for both mechanisms are higher than neat PLLA. For the PLLA/SiO2 nanocomposite the value of the E is higher than the corresponding value for PLLA, for the first area of mass loss, while the E of the second mechanism has a lower value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hayashi T. Biodegradable polymers for biomedical uses. Prog Polym Sci. 1994;19:663–702.

    Article  CAS  Google Scholar 

  2. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable, bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–37.

    Article  CAS  Google Scholar 

  3. Balasundaram G, Webster TJ. An overview of nano-polymers for orthopedic applications. Macromol Biosci. 2007;7:635–42.

    Article  CAS  Google Scholar 

  4. Boccaccini AR, Gerhardt LS, Rebeling S, Blaker JJ. Fabrication, characterization and assessment of bioactivity of poly(d/l-lactic acid) (PDLLA)/TiO2 nanocomposite films. Compos A. 2005;36:721–7.

    Article  Google Scholar 

  5. Abarrategi A, Gutierrez M, Moreno-Viccente C, Hortiguala MJ, Ramos V, Lopez-Lacomba JL, Ferrer M, Del Monte F. Multiwall carbon nanotube scaffold for tissue engineering purposes. Biomaterials. 2008;29:94–102.

    Article  CAS  Google Scholar 

  6. Kotela I, Podporska J, Soltysiak E, Konsztowicz KJ, Blazewicz M. Polymer nanocomposites for bone tissue substitutes. Ceram Int. 2009;35:2475–80.

    Article  CAS  Google Scholar 

  7. Agrawal M, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141–50.

    Article  CAS  Google Scholar 

  8. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–57.

    Article  CAS  Google Scholar 

  9. Satyanarayana D, Chatterji PR. Biodegradable polymers: challenges and strategies. J Macromol Sci Rev Macromol Chem Phys. 1993;C33:39–368.

    Google Scholar 

  10. Cheung HY, Lau KT, Lu TP, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos B Eng. 2007;38:291–300.

    Article  Google Scholar 

  11. Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials. 2002;23:1579–85.

    Article  CAS  Google Scholar 

  12. Alexander H, Langrana N, Massengill J, Weiss A. Development of new methods for phalangeal fracture fixation. J Biomech. 1981;14:377–87.

    Article  CAS  Google Scholar 

  13. Vassiliou A, Papageorgiou GZ, Achilias DS, Bikiaris DN. Non-isothermal crystallization kinetics of in situ prepared poly(ε-caprolactone)/surface-treated SiO2 nanocomposites. Macromol Chem Phys. 2007;21:364–76.

    Article  Google Scholar 

  14. Vassiliou A, Chrissafis K, Bikiaris DN. In situ prepared PBSu/SiO2 nanocomposites. Study of thermal degradation mechanism. Thermochim Acta. 2009;495:120–8.

    Article  CAS  Google Scholar 

  15. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer. 2007;48:1688–94.

    Article  CAS  Google Scholar 

  16. Wu CS, Liao HT. Modification of biodegradable polylactide by silica and wood flour through a sol-gel process. J Appl Polym Sci. 2008;109:2128–38.

    Article  CAS  Google Scholar 

  17. Wu L, Cao D, Huang Y, Li B. Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer. 2008;49:742–9.

    Article  CAS  Google Scholar 

  18. Zhou Q, Xanthos M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab. 2009;94:327–38.

    Article  CAS  Google Scholar 

  19. Jiang L, Zhang J, Wolcott MP. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer. 2007;48:7632–44.

    Article  CAS  Google Scholar 

  20. Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L. Thermomechanical and optical properties of biodegradable poly(l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci. 2009;114:3379–86.

    Article  CAS  Google Scholar 

  21. Chang JH, An YA, Sur GS. Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci B Polym Phys. 2003;41:94–103.

    Article  CAS  Google Scholar 

  22. Migliaresi CD, Cohn D, De Lollis A, Fambri L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights. Effect of thermal treatments. J Appl Polym Sci. 1991;43:83–95.

    Article  CAS  Google Scholar 

  23. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer. 2002;43:5483–91.

    Article  CAS  Google Scholar 

  24. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K. Kinetics study of cold-crystallization of poly(ethylene terephthalate) nanocomposites with multi-walled carbon nanotubes. Thermochim Acta. 2009;493:68–75.

    Article  CAS  Google Scholar 

  25. Di YW, Iannace S, Di ME, Nicolais L. Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Polym Sci B Polym Phys. 2005;43:689–98.

    Article  CAS  Google Scholar 

  26. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN. Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci. 2008;110:1739–49.

    Article  CAS  Google Scholar 

  27. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene-clay systems. J Phys Chem B. 2007;111:12685–12692.

    Article  CAS  Google Scholar 

  28. Yoon JT, Jeong YG, Lee SC, Min BG. Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol. 2009;20:631–8.

    Article  CAS  Google Scholar 

  29. Krishnamachari P, Zhang J, Lou J, Yan J, Uitenham L. Biodegradable poly(lactic Acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int J Polym Anal Charact. 2009;14:336–50.

    Article  CAS  Google Scholar 

  30. Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.

    Article  CAS  Google Scholar 

  31. Zhang J, Lou J, Ilias S, Krishnamachari P, Yan J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer. 2008;49:2381–6.

    Article  CAS  Google Scholar 

  32. McLauchlin AR, Thomas NL. Preparation and thermal characterization of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polym Degrad Stab. 2009;94:868–72.

    Article  CAS  Google Scholar 

  33. Chang JH, An YU, Cho D, Giannelis EP. Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica. Polymer. 2003;44:3715–20.

    Article  CAS  Google Scholar 

  34. Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2007;83:45–51.

    Article  Google Scholar 

  35. Starink MJ. On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature-dependent equilibrium state. J Mater Sci. 1997;32:6505–12.

    Article  CAS  Google Scholar 

  36. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  37. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Phys Chem. 1966;70A:487–523.

    Google Scholar 

  38. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  39. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Google Scholar 

  40. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  41. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–08.

    Article  CAS  Google Scholar 

  42. Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009;97:929–35.

    Article  CAS  Google Scholar 

  43. Opfermann J. Kinetic analysis using multivariate non-linear regression i. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  44. Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Beslikas T, Bikiaris D. Oxidized multi-walled carbon nanotubes as effective reinforcement and thermal stability agents of PLLA ligaments. J Appl Polym Sci. 2010;118:2712–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bikiaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrissafis, K., Pavlidou, E., Paraskevopoulos, K.M. et al. Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J Therm Anal Calorim 105, 313–323 (2011). https://doi.org/10.1007/s10973-010-1168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1168-z

Keywords

Navigation