Skip to main content
Log in

Structure, properties and rheological behavior of thermoplastic poly(lactic acid)/quaternary fulvic acid-intercalated saponite nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Sodium humate was oxidized with nitric acid to obtain fulvic acid (FA), which was further quaternized to obtain quaternary fulvic acid (QFA). QFA-intercalated saponite (QFA-saponite) was prepared ultrasonically. Thermoplastic poly(lactic acid) (PLA)/quaternary fulvic acid-intercalated saponite nanocomposites were prepared by melt intercalation technique. The morphology and dispersion of QFA-saponite were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Mechanical properties, thermal stability and crystallization behavior of PLA/QFA-saponite nanocomposites were also tested. Results showed a predominantly flocculated structure and partially intercalated morphology for QFA-saponite. Mechanical testing and thermogravimetric analysis showed that the tensile strength, impact properties, and thermostability of PLA/QFA-saponite nanocomposites improved significantly compared to pure PLA. Differential scanning calorimetry results showed that crystallinity of PLA increased from 22.5 to 68.3 % on addition of QFA-saponite. Polarized optical microscopy showed QFA-saponite as a nucleating agent for PLA that enhanced its crystallization rate. Rotational rheological behaviors of PLA/QFA-saponite nanocomposites demonstrated that incorporation of QFA-saponite increased rigidity of the network structure in PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polyme Sci 6:576–602

    Article  Google Scholar 

  2. Wang L, Cheng S, Zhuo R (2014) Syntheses and properties of novel copolymers of polycaprolactone and aliphatic polycarbonate based on ketal-protected dihydroxyacetone. Polym Bull 1:47–56

    Article  Google Scholar 

  3. Dadbin S, Naimian F, Akhavan A (2011) Poly (lactic acid)/layered silicate nanocomposite films: morphology, mechanical properties, and effects of γ-radiation. J Appl Polym Sci 1:142–149

    Article  Google Scholar 

  4. Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. J Appl Polym Sci 1:37–43

    Article  Google Scholar 

  5. Gattin R, Copinet A, Bertrand C, Coutuier Y (2003) Biodegradation study of a coextruded starch and poly (lactic acid) material in various media. J Appl Polym Sci 3:825–831

    Article  Google Scholar 

  6. Ali F, Chang YW, Kang SC, Yoon Yong J (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 1:91–98

    Article  Google Scholar 

  7. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:2246–2255

    Article  CAS  Google Scholar 

  8. Yuan Y, Ruckenstein E (1998) Polyurethane toughened polylactide. Polym Bull 4–5:485–490

    Article  Google Scholar 

  9. Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 1:58–65

    Article  Google Scholar 

  10. Su ZZ, Guo WH, Liu YJ, Li QY, Wu CF (2009) Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite. Polym Bull 5:629–642

    Article  Google Scholar 

  11. Nunez K, Rosales C, Perera R, Villarreal N, Pastor JM (2011) Nanocomposites of PLA/PP blends based on sepiolite. Polym Bull 9:1991–2016

    Article  Google Scholar 

  12. Ahmadi SJ, Huang YD, Li W (2004) Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J Mater Sci 39:1919–1925

    Article  CAS  Google Scholar 

  13. Shen Z, Simon GP, Cheng YB (2002) Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites. Polymer 15:4251–4260

    Article  Google Scholar 

  14. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Sinch RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stabil 2:234–250

    Article  Google Scholar 

  15. Su XF, Zhang G, Xu K, Wang CL, Wang PX (2008) The effect of MMT/modified MMT on the structure and performance of the superabsorbent composite. Polym Bull 1:69–78

    Article  Google Scholar 

  16. Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly (l-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 2:443–450

    Article  Google Scholar 

  17. Leu YY, Mohd Ishak ZA, Chow WS (2012) Mechanical, thermal, and morphological properties of injection molded poly (lactic acid)/SEBS-g-MAH/organo-montmorillonite nanocomposites. J Appl Polym Sci 2:1200–1207

    Article  Google Scholar 

  18. Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 2:191–198

    Article  Google Scholar 

  19. Katti KS, Sikdar D, Katti DR, Ghosh P, Verna D (2006) Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modeling. Polymer 1:403–414

    Article  Google Scholar 

  20. Hayes MHB, Clapp CE (2001) Humic substances: considerations of compositions, aspects of structure, and environmental influences. Soil Sci 11:723–737

    Article  Google Scholar 

  21. MacCarthy P (2001) The principles of humic substances. Soil Sci 11:738–751

    Article  Google Scholar 

  22. Stevenson IL, Schnitzer M (1982) Transmission electron microscopy of extracted fulvic and humic acids 1. Soil Sci 3:179–185

    Article  Google Scholar 

  23. Gondar D, Lopez R, Fiol S, Antelo JM, Arce F (2005) Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 3:367–374

    Article  Google Scholar 

  24. Sierra MMD, Giovanela M, Parlanti E, SorianoSierra EJ (2005) Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 6:715–733

    Article  Google Scholar 

  25. Islam KMS, Schuhmacher A, Gropp JM (2005) Humic acid substances in animal agriculture. Pakistan J Nutr 3:126–134

    Google Scholar 

  26. Trckova M, Matlova L, Hudcova H, Faldyna M, Zraly Z, Dvorska L, Beran V, Pavlik I (2005) Peat as a feed supplement for animals: a review. Vet Med 50:361–377

    CAS  Google Scholar 

  27. Van Rensburg CEJ, Malfeld SCK, Dekker J (2001) Topical application of oxifulvic acid suppresses the cutaneous immune response in mice. Drug Develop Res 1:29–32

    Article  Google Scholar 

  28. Lagaly G, Dekany I (2005) Adsorption on hydrophobized surfaces: clusters and self-organization. Adv Colloid Interface Sci 114–115:189–204

    Article  Google Scholar 

  29. Brown JM, Curliss D, Vaia RA (2000) Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater 12:3376–3384

    Article  CAS  Google Scholar 

  30. Li Y, Ishida H (2003) Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries. Langmuir 6:2479–2484

    Article  Google Scholar 

  31. Tsou CH, Suen MC, Yao WH, Yeh JT, Wu CS, Tsou CY, Chiu SH, Chen JC, Wang RY, Lin SM, Hung WS, Guzman MD, Hu CC, Lee KR (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 8:5617–5632

    Article  Google Scholar 

  32. Jia QM, Zheng M, Chen HX, Shen RJ (2005) Synthesis and characterization of polyurethane/epoxy interpenetrating network nanocomposites with organoclays. Polym Bull 1–2:65–73

    Article  Google Scholar 

  33. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. J Appl Clay Sci 15:11–29

    Article  CAS  Google Scholar 

  34. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  35. Aslzadeh MM, Abdouss M, Sadeghi GMM (2013) Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. J Appl Polym Sci 3:1683–1690

    Article  Google Scholar 

  36. Barick AK, Tripathy DK (2010) Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique: effect of nanoclay on morphology, mechanical, thermal, and rheological properties. J Appl Polym Sci 2:639–654

    Article  Google Scholar 

  37. Cheng S, Lau K, Liu T, Zhao YQ, Lam PM, Yin YS (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Eng 40:650–654

    Article  Google Scholar 

  38. Chow WS, Lok SK (2009) Thermal properties of poly (lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95:627–632

    Article  CAS  Google Scholar 

  39. Song P, Chen GY, Wei ZY, Zhang WX, Liang JC (2012) Rapid crystallization of poly (l-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer 19:4300–4309

    Article  Google Scholar 

  40. Lopez RG, Trevino ME, Salazar LV, Peralta RD, Becerra F, Puig JE, Mendizabal E (1997) Polymerization of vinyl acetate in ternary microemulsions stabilized with hexadecyltrimethylammonium bromide. Polym Bull 4:411–417

    Article  Google Scholar 

  41. Sathe SN, Devi S, Srinivasa Rao GS, Rao KV (1996) Relationship between morphology and mechanical properties of binary and compatibilized ternary blends of polypropylene and nylon 6. J Appl Polym Sci 61:97–107

    Article  CAS  Google Scholar 

  42. Sathe SN, Srinivasa Rao GS, Rao KV, Devi S (1996) The effect of composition on morphological, thermal, and mechanical properties of polypropylene/nylon-6/polypropylene-g-butyl acrylate blends. J Eng Sci 36:2443–2450

    CAS  Google Scholar 

  43. Li B, Dong FX, Wang XL, Yang J, Wang DY, Wang YZ (2009) Organically modified rectorite toughened poly (lactic acid): nanostructures, crystallization and mechanical properties. Euro Polym J 11:2996–3003

    Article  Google Scholar 

  44. Chow WS, Neoh SS (2009) Mechanical, morphological and thermal properties of polycarbonate/SEBS-G-MA/montmorillonite nanocomposites. Polym-Plast Technol Eng 49:62–68

    Article  Google Scholar 

  45. Ray SS, Yamada K, Okamoto M, Ueda K (2003) Control of biodegradability of polylactide via nanocomposite technology. Macromol Mater Eng 3:203–208

    Article  Google Scholar 

  46. Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Euro Polym J 7:2819–2835

    Article  Google Scholar 

  47. Iannace S, Sabatini G, Ambrosio L, Nicolais L (1995) Mechanical behavior of composite artificial tendons and ligaments. Biomaterials 9:675–680

    Article  Google Scholar 

  48. Ray SS, Okamoto M (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 14:815–840

    Article  Google Scholar 

  49. Lertwimolnun W, Vergnes B (2005) Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 10:3462–3471

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate that this work is financially supported by National Science Foundation of China (51163013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, W., Wang, W. Structure, properties and rheological behavior of thermoplastic poly(lactic acid)/quaternary fulvic acid-intercalated saponite nanocomposites. Polym. Bull. 73, 1015–1035 (2016). https://doi.org/10.1007/s00289-015-1532-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1532-z

Keywords

Navigation