Skip to main content
Log in

Development of thermogravimetric method for quantitative determination of metronidazole

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this work was to develop and validate a fast and reproducible method to determine the concentration of metronidazole in drug substance and tablets. The samples were analyzed by dynamic thermogravimetry, using 10, 20, 40, 60 and 80°C min–1 heating rates in nitrogen and in nitrogen with synthetic air. Obtained data were used in the Antoine and Langmuir equations in order to have the pressure curves. Vapor pressure curves of drug and tablet of metronidazole were evaluated using the mathematical indexes of difference factor, f 1, and similarity factor, f 2, to compare their profiles. The data showed that there is no significant difference between the vapor pressure profiles of drug and tablet of metronidazole in both environmental conditions, which confirms that the process is really vaporization. The concentration of metronidazole was determined in the raw material and tablets of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BG Katzung et al. (2003) Farmacologia Básica & Clínica Guanabara Koogan Rio de Janeiro 709–715, 778

    Google Scholar 

  2. AC Schmidt (2005) J. Therm. Anal. Cal. 81 291 Occurrence Handle10.1007/s10973-005-0781-8 Occurrence Handle1:CAS:528:DC%2BD2MXnslyru70%3D

    Article  CAS  Google Scholar 

  3. FI Kanaze E Kokkalou I Niopas M Georgarakis A Stergiou D Bikiares (2006) J. Therm. Anal. Cal. 86 283 Occurrence Handle10.1007/s10973-005-6989-9

    Article  Google Scholar 

  4. FS Souza APB Gomes RO Macedo (2001) J. Therm. Anal. Cal. 64 739 Occurrence Handle10.1023/A:1011548512655

    Article  Google Scholar 

  5. BD Glass Cs Novák ME Brown (2004) J. Therm. Anal. Cal. 77 1013 Occurrence Handle10.1023/B:JTAN.0000041677.48299.25 Occurrence Handle1:CAS:528:DC%2BD2cXnsFOktrc%3D

    Article  CAS  Google Scholar 

  6. B Marciniec M Kozak K Dettlaff (2004) J. Therm. Anal. Cal. 77 305 Occurrence Handle10.1023/B:JTAN.0000033215.77806.b0 Occurrence Handle1:CAS:528:DC%2BD2cXlt1yns7o%3D

    Article  CAS  Google Scholar 

  7. RO Macedo TG do Nascimento CFS Aragão APB Gomes (2000) J. Therm. Anal. Cal. 59 1 Occurrence Handle10.1023/A:1010176931264

    Article  Google Scholar 

  8. ACD Medeiros NAB de Cervantes APB Gomes RO Macedo (2001) J. Therm. Anal. Cal. 64 745 Occurrence Handle10.1023/A:1011500629494

    Article  Google Scholar 

  9. NAB de Cervantes ACD Medeiros AFO Santos RO Macedo (2003) J. Therm. Anal. Cal. 72 535 Occurrence Handle10.1023/A:1024569414701

    Article  Google Scholar 

  10. P Basu KS Alexander A Riga (2006) J. Therm. Anal. Cal. 83 19 Occurrence Handle10.1007/s10973-004-6860-4 Occurrence Handle1:CAS:528:DC%2BD28XitF2nsLo%3D

    Article  CAS  Google Scholar 

  11. GGG Oliveira H Ferraz JSR Matos (2005) J. Therm. Anal. Cal. 79 267 Occurrence Handle10.1007/s10973-005-0047-5 Occurrence Handle1:CAS:528:DC%2BD2MXkt1Ciu70%3D

    Article  CAS  Google Scholar 

  12. K Chartterjee A Hazra D Dollimore KS Alexander (2002) Eur. J. Pharm. Biopharm. 54 171 Occurrence Handle10.1016/S0939-6411(02)00079-6

    Article  Google Scholar 

  13. L Burnham D Dollimore K Alexander (2001) Thermochim. Acta 367–368 15 Occurrence Handle10.1016/S0040-6031(00)00652-3

    Article  Google Scholar 

  14. TV Sorokina D Dollimore KS Alexander (2002) Thermochim. Acta 392–393 315 Occurrence Handle10.1016/S0040-6031(02)00117-X

    Article  Google Scholar 

  15. S Vecchio A Catalani V Rossi M Tomassetti (2004) Thermochim. Acta 420 99 Occurrence Handle10.1016/j.tca.2003.09.039 Occurrence Handle1:CAS:528:DC%2BD2cXnvFGmt7Y%3D

    Article  CAS  Google Scholar 

  16. K Chaterjee D Dollimore K Alexander (2001) Int. J. Pharm. 213 31 Occurrence Handle10.1016/S0378-5173(00)00644-X

    Article  Google Scholar 

  17. A Hazra K Alexander D Dollimore A Riga (2004) J. Therm. Anal. Cal. 73 317 Occurrence Handle10.1023/B:JTAN.0000017352.86803.6d

    Article  Google Scholar 

  18. R. M. Stephenson and S. Malamowski, Handbook of the Thermodynamics of Organic Compounds, Elsevier, New York, p. 263.

  19. T Ozawa (1965) Bull. Chem. Soc. Jpn. 38 1881 Occurrence Handle10.1246/bcsj.38.1881 Occurrence Handle1:CAS:528:DyaF28XjtVyisQ%3D%3D

    Article  CAS  Google Scholar 

  20. VP Shah Y Tsong P Sathe L Jen-Pie (1998) Pharm. Res. 15 6

    Google Scholar 

  21. InstitutionalAuthorNameAtheneu et al. (1988) Farmacopéia Brasileira, 4th Ed. Atheneu São Paulo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Barrêto Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A.P.B., Correia, L.P., da Silva Simões, M.O. et al. Development of thermogravimetric method for quantitative determination of metronidazole. J Therm Anal Calorim 88, 383–387 (2007). https://doi.org/10.1007/s10973-006-8007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8007-2

Keywords

Navigation