Skip to main content
Log in

Low-temperature thermodynamic properties of dl-cysteine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat capacity C p(T) of the crystalline dl-cysteine was measured on heating the system from 6 to 309 K by adiabatic calorimetry; thermodynamic functions were calculated based on these data smoothed in the temperature range 6–273.15 K. The values of heat capacity, entropy, and enthalpy at 273.15 K were equal to 142.4, 153.3, and 213.80 J K−1 mol−1, respectively. At about 300 K, a heat capacity peak was observed, which was interpreted as an evidence of a first-order phase transition. The enthalpy and the entropy of the transition are equal, respectively, to 2300 ± 50 and 7.6 ± 0.1 J K−1 mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Due to a technical reason, the manuscript has been stuck in the production process, so that by the time, when this paper is being published, the structural and spectroscopic experiments have been successfully carried out in our group by other researchers (see [21]) and the results have confirmed the correctness of the assumptions made in this study based on calorimetry.

References

  1. Kolesnik EN, Goryainov SV, Boldyreva EV. Different behavior of l- and dl-serine crystals at high pressures: phase transitions in l-serine and stability of the dl-serine structure. Doklady Phys Chem. 2005;404:61–64 (Rus) or 169–172 (Engl)

    Google Scholar 

  2. Boldyreva EV, Kolesnik EN, Drebushchak TN, Sowa H, Ahsbahs H, Seryotkin YV. A comparative study of the anisotropy of lattice strain induced in the crystals of dl-serine by cooling down to 100 K, or by increasing pressure up to 8.6 GPa. A comparison with l-serine. Z Kristallogr. 2006;221:150–61.

    Article  CAS  Google Scholar 

  3. Drebushchak VA, Kovalevskaya YA, Paukov IE, Boldyreva EV. Heat capacity of l- and dl-serine in a temperature range of 5.5 to 300 K. J Therm Anal Calorim. 2007;89(2):649–54.

    Article  CAS  Google Scholar 

  4. Bordallo HN, Kolesov BA, Boldyreva EV, Juranyi F. Different dynamic of chiral and racemic (l- and dl-) serine crystals: Evidenced by incoherent inelastic neutron and Raman scattering. J Am Chem Soc (Commun). 2007;129(36):10984–5.

    Article  CAS  Google Scholar 

  5. Kolesov BA, Boldyreva EV. Difference in the dynamic properties of chiral and racemic crystals of serine studied by Raman spectroscopy at 3–295 K. J Phys Chem B. 2007;111(51):14387–97.

    Article  CAS  Google Scholar 

  6. Jocelyn PC. Biochemistry of the SH-groups. New York: Academic Press; 1972.

    Google Scholar 

  7. Friedman M. The chemistry and biochemistry of sulfhydryl groups in amino acids, peptides and proteins. New York: Pergamon Press; 1973.

    Google Scholar 

  8. Raso SW, Clark PL, Haase-Pettingell C, King J, Thomas GJ. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys→Ser mutant proteins. J Mol Biol. 2001;307:899–911.

    Article  CAS  Google Scholar 

  9. Takusagawa F, Koerzle T, Kou WWH, Parthasarathy R. Structure of N-acetyl-l-cysteine: X-ray (T = 295 K) and neutron (T = 16 K) diffraction studies. Acta Crystallogr. 1981;B37:1591–6.

    CAS  Google Scholar 

  10. Paukov IE, Kovalevskaya YA, Drebushchak VA, Drebushchak TN, Boldyreva EV. An extended phase transition in crystalline l-cysteine near 70 K. J Phys Chem B. 2007;111(31):9186–8.

    Article  CAS  Google Scholar 

  11. Kerr KA, Ashmore JP. Structure and conformation of orthorhombic l-cysteine. Acta Crystallogr B. 1973;29:2124–7.

    Article  CAS  Google Scholar 

  12. Kerr KA, Ashmore JP, Koetzle F. A neutron diffraction study of l-cysteine. Acta Crystallogr B. 1975;31:2022–6.

    Article  Google Scholar 

  13. Harding MM, Long HA. The crystal and molecular structure of l-cysteine. Acta Crystallogr B. 1968;24:1096–102.

    Article  CAS  Google Scholar 

  14. Görbitz CH, Dalhus B. Redetermination of l-leucine at 120 K. Acta Crystallogr C. 1996;52:1756–9.

    Article  Google Scholar 

  15. Moggach SA, Clark SJ, Parsons S. l-cysteine-I at 30 K. Acta Crystallogr E. 2005;61:o2739–42.

    Article  Google Scholar 

  16. Luger P, Weber M. dl-cysteine at 298 K. Acta Crystallogr C. 1999;55:1882–5.

    Article  Google Scholar 

  17. Paukov IE. Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of l-cysteine. J Therm Anal Calorim. 2008;93:423–8.

    Article  CAS  Google Scholar 

  18. Huffman HM, Ellis EL. Thermal data. III. The heat capacities, entropies and free energies of four organic compounds containing sulphur. J Am Chem Soc. 1935;57:46–8.

    Article  CAS  Google Scholar 

  19. Madec C, Lauransan J, Garrigou-Lagrange C, Housty J, Chanh NB. Mise en evidence d’une transition de phase dans la dl-cystéine. C R Acad Sc Paris. 1979;289(Series C):413–5.

    CAS  Google Scholar 

  20. Paukov IE, Kovalevskaya YA, Rahmoun NS, Geiger CA. A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91:35–8.

    Article  CAS  Google Scholar 

  21. Minkov VS, Tumanov NA, Kolesov BA, Boldyreva EV, Bizyaev SN. Phase transitions in the crystals of l- and dl-cysteine on cooling: the role of the hydrogen-bond distortions and the side-chain motions. 2. dl-cysteine. J Phys Chem B. 2009;113:5262–72.

    Google Scholar 

  22. Drebushchak VA, Kovalevskaya YA, Paukov IE, Boldyreva EV. Low temperature heat capacity of α and γ polymorphs of glycine. J Therm Anal Calorim. 2003;74:109–20.

    Article  CAS  Google Scholar 

  23. Drebushchak VA, Boldyreva EV, Kovalevskaya YuA, Paukov IE, Drebushchak TN. Low-temperature heat capacity of β-glycine and a phase transition at 252 K. J Therm Anal Calorim. 2005;79:65–70.

    Article  CAS  Google Scholar 

  24. Drebushchak VA, Kovalevskaya YA, Paukov IE, Boldyreva EV. Heat capacity of α-glycylglycine in a temperature range of 6 to 440 K: comparison with glycines. J Therm Anal Calorim. 2006;85:485–90.

    Article  CAS  Google Scholar 

  25. Drebushchak VA, Kovalevskaya YA, Paukov IE, Boldyreva EV. Low-temperature heat capacity of diglycylglycine: some summaries and forecasts for the heat capacity of amino acids and peptides. J Therm Anal Calorim. 2008;93:865–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. T.N. Drebushchak for the X-ray characterization of the sample and to Dr. N.A. Pankrushina for the measurements of optical activity, and Dr. I.N. Azarova for the chromatographic analysis. The work was supported by the Integration Projects #49 and #110 of the SB RAS, by a grant from RFBR (05-03-32468), and grants from BRHE (NO-008-XI/BG6108 and RUX0-008-NO-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Boldyreva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukov, I.E., Kovalevskaya, Y.A. & Boldyreva, E.V. Low-temperature thermodynamic properties of dl-cysteine. J Therm Anal Calorim 100, 295–301 (2010). https://doi.org/10.1007/s10973-009-0457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0457-x

Keywords

Navigation