Skip to main content
Log in

The use of thermal analysis methods for predicting the thermal endurance of an epoxy resin used as electrical insulator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For the characterization of an epoxy resin composite material, the following analyses were performed: thermal analysis (TG/DTG/DTA) in nitrogen flow at five linear heating rates and under four quasi-isothermal temperature programs, coupled TG + FTIR analysis, DSC analysis in nitrogen flow, X-ray diffraction and FTIR spectroscopy. The processing of the TG data was performed by using Netzsch Thermokinetics—a software module for kinetic analysis. The dependence of the activation energy, evaluated by isoconversional methods, on the conversion degree shows that the investigated process is a complex one. The kinetic scheme and the corresponding kinetic parameters were determined by multivariate nonlinear regression program. The kinetic scheme and kinetic parameters thus obtained were used to calculate the TG curves corresponding to the quasi-isothermal temperature programs. A good agreement between the experimental and calculated TG curves has been found. The obtained results were used for the prediction of thermal lifetime of this material corresponding to some usage temperatures and to the 5% end-point criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. IEC 60216 Electrical insulating materials—thermal endurance properties, parts 1–8. Geneva: International Electrotechnical Commission.

  2. See for example: Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Springer, Switzerland, 2015, Ch. 4.

  3. Núñez L, Villanueva M. Influence of the curing cycle selection on the thermal degradation of an epoxy-diamine system. J Therm Anal Calorim. 2005;80:141–6.

    Article  Google Scholar 

  4. Núñez-Regueira L, Villanueva M, Fraga-Rivas I. Activation energies for the thermodegradation process of an epoxy diamine system. J Therm Anal Calorim. 2006;83:727–33.

    Article  Google Scholar 

  5. Ho T-H, Leu T-S, Sun Y-M, Shien J-Y. Thermal degradation kinetics and flame retardancy of phosphorus-containing dicyclopentadiene epoxy resins. Polym Degrad Stab. 2006;91:2347–56.

    Article  CAS  Google Scholar 

  6. Kandare E, Kandola BK, Staggs IEJ. Global kinetics of thermal degradation of flame-retarded epoxy resin formulations. Polym Degrad Stab. 2007;92:1778–877.

    Article  CAS  Google Scholar 

  7. Arasa M, Ramis X, Salla JM, Mantecón A, Serra A. A study of the ester-modified epoxy resins obtained by copolymerization of DGEBA with γ-lactones initiated by rare earth triflates. Polym Degrad Stab. 2007;92:2214–22.

    Article  CAS  Google Scholar 

  8. Budrugeac P, Segal E. Application of isoconversional and multivariate non-linear regression methods for evaluation of the degradation mechanism and kinetic parameters of an epoxy resin. Polym Degrad Stab. 2008;93:1073–980.

    Article  CAS  Google Scholar 

  9. Budrugeac P. Thermokinetic study of the thermo-oxidative degradation of a composite epoxy resin material. Rev Roumaine Chim. 2013;58:371–9.

    CAS  Google Scholar 

  10. Mingfeng Chen M, Peng S, Zhoa M, Liu Y, Liu C. The curing and degradation kinetics of modified epoxy–SiO2 composite. J Therm Anal Calorim. 2017;130:2123–31.

    Article  Google Scholar 

  11. Leena K, Soumyamol PB, Baby M, Suraj S, Rajeev R, Mohan DS. Non-isothermal cure and decomposition kinetics of epoxy–imidazole systems. J Therm Anal Calorim. 2017;130:1053–61.

    Article  CAS  Google Scholar 

  12. Budrugeac P. Theory and practice in the thermoanalytical kinetics of complex processes. Application for the isothermal and non-isothermal thermal degradation of HDPE. Thermochim Acta. 2010;500:30–7.

    Article  CAS  Google Scholar 

  13. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham AK, Opfermann J, Srey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhasni T. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  14. Tanaka H, Brown ME. The theory and practice of thermoanalytical kinetics of solid-state reactions. J Therm Anal Calorim. 2005;80:795–7.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Burnham A, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga K, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  17. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964;C6:183–95.

    Google Scholar 

  18. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  19. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  20. Anderson HL, Kemmler A, Strey R. Comparison of different non-linear evaluation methods in thermal analysis. Thermochim Acta. 1996;271:23–9.

    Article  CAS  Google Scholar 

  21. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:1–22.

    Article  CAS  Google Scholar 

  22. Roduit B. Computational aspects of kinetic analysis: Part E: the ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000;355:171–80.

    Article  CAS  Google Scholar 

  23. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  24. Budrugeac P. Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2008;92:291–6.

    Article  CAS  Google Scholar 

  25. Budrugeac P. Comparison between model-based and non-isothermal model-free computational procedures for prediction of conversion-time curves of calcium carbonate decomposition. Thermochim Acta. 2019;679:178322.

    Article  CAS  Google Scholar 

  26. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1997.

    Google Scholar 

  27. NIST Chemistry Webbook Standard Reference Database No. 69, June, 2005 Release. https://webbook.nist.gov/chemistry.

Download references

Acknowledgements

The work was supported by the “Romanian Ministry of Research and Innovation—Executive Agency for Higher Education, Research, Development and Innovation Funding, UEFISCDI” research project—Advanced methodology for the kinetic analysis of complex heterogeneous processes with application in prediction of thermal behavior of materials and their thermal lifetime (MET-AV, PN-III-P4-ID-PCE Nr. 112/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Cucos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budrugeac, P., Cucos, A., Dascălu, R. et al. The use of thermal analysis methods for predicting the thermal endurance of an epoxy resin used as electrical insulator. J Therm Anal Calorim 146, 1791–1801 (2021). https://doi.org/10.1007/s10973-020-10156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10156-5

Keywords

Navigation