Skip to main content
Log in

Heat capacity increases with pressure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Conventional thermodynamic expression predicts that the isobaric heat capacity decreases with increasing pressure. In model calculations, heat capacity increases with pressure, decreases, or remains insensitive to pressure, depending on the model applied. The expression cannot be applied to the gases, but experimental data on gases show evidently that heat capacity increases with pressure.

Considering the change in enthalpy along two different paths with identical starting and ending points, we derive new expression dC P/dPV, where α is the volume coefficient of thermal expansion and V is the molar volume. The expression predicts the increase in C P with pressure and can be applied to gases. The test of the new expression against accurate literature data on the heat capacity of air, gaseous and liquid, demonstrates its validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wunderlich and H. Baur, Adv. Polym. Sci., 7 (1970) 151.

    Article  CAS  Google Scholar 

  2. G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, McGraw-Hill, New York 1923, p. 653. (German edition of 1927, Russian edition of 1936).

    Google Scholar 

  3. E. Brosh, G. Makov and R. Z. Shneck, CALPHAD, 31 (2007) 173.

    Article  CAS  Google Scholar 

  4. M. A. Kuznetsov and S. I. Lazarev, Meas. Tech., 48 (2005) 798.

    Article  CAS  Google Scholar 

  5. Y. Uwatoko, T. Fujiwara, M. Hedo, F. Tomioka and I. Umehara, J. Phys. Cond. Matt., 17 (2005) S1011.

    Article  CAS  Google Scholar 

  6. P. J. van Ekeren and E. R. T. Bevers, J. Therm. Anal. Cal., 90 (2007) 931.

    Article  Google Scholar 

  7. B. Hakansson, P. Andersson and G. Backstrom, Rev. Sci. Instrum., 59 (1988) 2269.

    Article  Google Scholar 

  8. S. Andersson and L. Dzhavadov, J. Phys. Cond. Matt., 4 (1992) 6209.

    Article  CAS  Google Scholar 

  9. B. B. Karki, D. Bhattarai and L. Stixrude, Phys. Rev. B, 76 (2007) 104205.

    Google Scholar 

  10. B. B. Karki, D. Bhattarai and L. Stixrude, Phys. Rev. B, 73 (2006) 174208.

    Google Scholar 

  11. G. P. Johari and O. Andersson, Phys. Rev. B, 73 (2006) 094202.

    Google Scholar 

  12. I. Hamdi, M. Aouissi, A. Qteish and N. Meskini, Phys. Rev. B, 73 (2006) 174114.

    Google Scholar 

  13. Y. Miyake, D. Bessières, F. Plantier, H. Ushiki and C. Boned, J. Therm. Anal. Cal., 91 (2008) 347.

    Article  CAS  Google Scholar 

  14. S. Ghose, M. Krisch, A. R. Oganov, A. Beraud, A. Bosak, R. Gulve, R. Seelaboyina, H. Yang and S. K. Saxena, Phys. Rev. Lett., 96 (2006) 035507.

    Google Scholar 

  15. X. Sha and R. E. Cohen, Phys. Rev. B, 73 (2006) 104303.

  16. D. Alfe, G. D. Price and M. J. Gillan, Phys. Rev. B, 64 (2001) 045123.

    Google Scholar 

  17. P. W. Bridgman, Rev. Mod. Phys., 18 (1946) 1.

    Article  CAS  Google Scholar 

  18. L. G. Hoxton, Phys. Rev., 36 (1930) 1091.

    Article  CAS  Google Scholar 

  19. J. W. Magee, Int. J. Thermophys., 15 (1994) 849.

    Article  CAS  Google Scholar 

  20. S. Bretsznejder, Properties of Gases and Liquids. Khimija, Moscow 1966, p. 535 (in Russian, translated from Polish).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A. Heat capacity increases with pressure. J Therm Anal Calorim 95, 313–317 (2009). https://doi.org/10.1007/s10973-008-9221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9221-x

Keywords

Navigation