Skip to main content

Heat capacities of linear high polymers

  • Conference paper
  • First Online:
Heat Capacities of Linear High Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 7/2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Isa, I., Dole, M.: Specific heat of synthetic high polymers. XII. Atactic and isotactic polystyrene. J. Phys. Chem. 69, 2668 (1965).

    CAS  Google Scholar 

  2. Alford, S., Dole, M.: Specific heat of synthetic high polymers. VI. A study of the glass transition in polyvinyl chloride. J. Amer. chem. Soc. 77, 4774 (1955).

    Article  CAS  Google Scholar 

  3. Allegra, G.: Linear conditions in chain systems with neighbour interactions; I. Theory and general applications. Makromol. Chem. 117, 12 (1968).

    Article  CAS  Google Scholar 

  4. Anderson, C. T.: The heat capacities of selenium crystals, selenium glass, and tellurium at low temperatures. J. Amer. chem. Soc. 59, 1036 (1937).

    Article  CAS  Google Scholar 

  5. Arakawa, T., Wunderlich, B.: Thermodynamic properties of extended chain polymethylene single crystals. J. Polymer. Sci. C. 16, 653 (1967).

    CAS  Google Scholar 

  6. Badoche, M., Li, S.-H.: Cohésion et polymerisation du chlorure de polyvinyle d'apres sa chaleur spécifique. Compt. Rend. Acad. Sci. Paris. 231, 50 (1950).

    CAS  Google Scholar 

  7. — — Variations de la chaleur spécifique de dérivés polyvinyliques en fonction du degré de polymérisation à différentes témperatures. Bull. Soc. chim. Fr. 1951 546.

    Google Scholar 

  8. Bartenev, G. M., Gorbatkina, Yu. A., Luk'yanov, I. A.: Thermal properties and methods for measuring thermal expansion, specific heat, and thermal conductivity of polymers. Plasticheskie Massy 1963, 56.

    Google Scholar 

  9. Baur, H.: Über die Gültigkeitsgrenzen der Tarasov-Näherung bei Polymeren und die Wärmekapazität von kristallinem Polyäthylen. Kolloid-Z. u. Z. Polymere (1970, to be published).

    Google Scholar 

  10. — Gitterschwingungen in Polymeren. Vortrag, Frühjahrstagung der DPG, Gießen 1968; Veröffentlichung in Vorbereitung.

    Google Scholar 

  11. Beattie, J. A.: Six place tables of the Debye energy and specific heat functions. J. Math. Phys. (M. I. T.) 6, 1 (1926/27).

    Google Scholar 

  12. Beaumont, R. H., Clegg, B., Gee, G., Herbert, J. B. M., Marks, D. J., Robert, R. C., Sims, D.: Heat capacities of propylene oxide and some polymers of ethylene and propylene oxides. Polymer. 7, 401 (1966).

    Article  CAS  Google Scholar 

  13. Bekkedahl, N., Matheson, H.: Heat capacity, entropy, and free energy of rubber hydrocarbon. J. Res. Natl. Bur. Std. 15, 503 (1935).

    CAS  Google Scholar 

  14. — Scott, R. B.: Specific Heat of the synthetic rubber Hycar O. R. from 15° to 340° K. J. Res. Natl. Bur. Std. 29, 87 (1942).

    CAS  Google Scholar 

  15. Berti, L.: New petroleum-derived elastomer. Its characteristics and applications. Chim. Ind. (Milan) 43, 644 (1961).

    CAS  Google Scholar 

  16. Betts, D. D.: The extension of Houston's method with application to Debye Φ0. Can. J. Phys. 39, 233 (1961).

    CAS  Google Scholar 

  17. Blackman, M.: Contributions to the theory of the specific heat of crystals; II. On the vibrational spectrum of cubic lattices and its application to the specific heat of crystals. Proc. Roy. Soc. London 148A, 384 (1935).

    Google Scholar 

  18. — The specific heat of solids. In: Flügge, S. (Ed.): Encyclopedia of Physics, Vol. VII. Part 1. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  19. Boer, J. de, Uhlenbeck, G. E.: Studies in statistical mechanics, Vol. 1 (1962), Vol. 2 (1964), Vol. 3 (1965). Amsterdam: North-Holland Publishing-Comp.

    Google Scholar 

  20. Boogs, F. W.: Partition function of bulk polymers (I). J. Chem. Phys. 36, 1733 (1962).

    Article  Google Scholar 

  21. Born, M.: Theoretical investigations on the relation between crystal dynamics and X-ray scattering. Rept. Progr. Phys. 9, 294 (1943).

    Article  CAS  Google Scholar 

  22. — Bollnow, O. F.: Der Aufbau der festen Materie (Theoretische Grundlagen). In: Geiger-Scheels Handbuch der Physik, Bd. 24. Berlin: Springer 1927.

    Google Scholar 

  23. — Brody, E.: Über die spezifische Wärme fester Körper bei hohen Temperaturen. Z. Physik 6, 132 (1921).

    Article  CAS  Google Scholar 

  24. — — Über die Schwingungen eines mechanischen Systems mit endlichen Amplituden und ihre Quantelung. Z. Physik 6, 140 (1921).

    Article  CAS  Google Scholar 

  25. — Huang, K.: Dynamical theory of crystal lattices. London: Oxford Univ. Press 1954.

    Google Scholar 

  26. — v. Kármán, Th.: Über die Schwingungen in Raumgittern. Physik. Z. 13, 297 (1912).

    CAS  Google Scholar 

  27. — — Zur Theorie der spezifischen Wärme. Physik. Z. 14, 15 (1913).

    CAS  Google Scholar 

  28. Bowman, J. C., Krumhansl, J. A.: The low-temperature specific heat of graphite. J. Phys. Chem. Solids 6, 367 (1958).

    Article  CAS  Google Scholar 

  29. Boyer, R. F.: The relation of transition temperatures to chemical structure in high polymers. Rubber Chem. Technol. 36, 1303 (1963).

    CAS  Google Scholar 

  30. Braun, W., Hellwege, K. H., Knappe, W.: Enthalpie von Polyoxäthylenen im Temperaturbereich von 15–100° C. Kolloid-Z. Z. Polymere 215, 10 (1967).

    Article  CAS  Google Scholar 

  31. Brickwedde, F. G.: Data published in: Boundy, R. H., Boyer, R. F. (Ed.): Styrene. New York: Reinhold Publ. Corp. 1952.

    Google Scholar 

  32. Broadhurst, M. G.: Thermodynamic properties of polyethylene predicted from paraffin data. J. Res. Natl. Bur. Std. 67 A, 233 (1963).

    Google Scholar 

  33. Bunn, C. W., Cobbold, A. J., Palmer, R. P.: The fine structure of polytetrafluoroethylene. J. Polymer Sci. 28, 365 (1958).

    Article  CAS  Google Scholar 

  34. Bunsen, R.: Calorimetrische Untersuchungen. Ann. Physik. 141, 1 (1870).

    Google Scholar 

  35. Burdzhanadze, T. V., Privalov, P. L., Tarvkhelidze, N. N.: Vacuum calorimeter for the study of thermal properties of solutions of macromolecules. Bull. Acad. Sci. Georgian SSR 31, 277 (1963).

    CAS  Google Scholar 

  36. Burk, D. L., Friedberg, S. A.: Atomic heat of diamond from 11° to 200° K. Phys. Rev. 111, 1275 (1958).

    Article  CAS  Google Scholar 

  37. Chang, S. S., Bestul, A. B.: Heat capacities for atactic polystyrene of narrow molecular weight distribution to 360° K. J. Polymer. Sci. Part A2, 6, 849 (1968).

    Article  CAS  Google Scholar 

  38. Chiang, Y. C., Salinger, G. L., Choy, C. L.: Thermal conductivity and heat capacity of polyethylene between 1° and 4° K. (1968) (to be published).

    Google Scholar 

  39. Chernobyl'skii, I. I., Tertyshnik, K. G.: Thermophysical properties of some thermoplastic polymers. Khim. Prom. Ukr. 1966, 24.

    Google Scholar 

  40. Choy, C. L., Salinger, G. L., Chiang, Y. C., Treu, J. I.: Thermal properties of some amorphous solids at low temperatures. Bull. Am. Phys. Soc. 12, 1063 (1967).

    Google Scholar 

  41. — Hunt, R. G., Salinger, G. L., Chiang, Y. C.: Heat capacity of amorphous polymers between 0.6 and 4.2° K. (1968) (to be published).

    Google Scholar 

  42. Clark, E. S., Muus, L. T.: Partial disordering and crystal transitions in polytetrafluoroethylene. Z. Krist. 117, 119 (1962).

    Article  CAS  Google Scholar 

  43. Clegg, C. A., Gee, D. R., Melia, T. P., Tyson, A.: Thermodynamics of polymerization of heterocyclic compounds. Part 2. The heat capacity, entropy, enthalpy and free energy of polytetrahydrofuran. Polymer 9, 501 (1968).

    Article  CAS  Google Scholar 

  44. Cole, E. A., Holmes, D. R.: Crystal lattice parameters and the thermal expansion of linear paraffin hydrocarbons, including polyethylenes. J. Polymer Sci. 46, 245 (1960).

    Article  CAS  Google Scholar 

  45. Dainton, F. S., Evans, D. M., Hoare, F. E., Melia, T. P.: Thermodynamic functions of linear high polymers. Polymer 3 (1962); Part I: Polyoxymethylene. p. 263; Part II: Thermodynamic functions of penton, p. 271; Part III; Polyethylene. p. 277; Part IV: Stereospecific poly-α-olefines. p. 286; Part V: cis-and trans-1,4-polybutadiene. p. 297; Part VI: Polysulphones. p. 310; Part VII: Lexan. p. 316; Part VIII: Methylmethacrylate and polymethylmethacrylate. p. 317.

    Google Scholar 

  46. Dean, P.: Vibrational spectra of diatomic chains. Proc. Roy. Soc. London 254A, 507 (1960).

    Google Scholar 

  47. — Vibrational spectra of diatomic chains (II). Proc. Roy. Soc. London 260A, 264 (1961).

    Google Scholar 

  48. Debye, P.: Zur Theorie der spezifischen Wärmen. Ann. Physik 39, 789 (1912).

    CAS  Google Scholar 

  49. Desnoyers, J. E., Morrison, J. A.: Heat capacity of diamond between 12.8° and 277° K. Phil. Mag. 3, 42 (1958).

    CAS  Google Scholar 

  50. DeSorbo, W.: The specific heat of crystalline selenium at low temperatures. J. Chem. Phys. 21, 1144 (1953).

    Article  CAS  Google Scholar 

  51. — Tyler, W. W.: The specific heat of graphite from 13° to 300° K. J. Chem. Phys. 21, 1660 (1953).

    Article  CAS  Google Scholar 

  52. — Nichols, G. E.: A calorimeter for the temperature region 1–20° K. The specific heat of some graphite specimens. J. Phys. Chem. Solids 6, 352 (1958).

    Article  CAS  Google Scholar 

  53. Dick, W., Müller, F. H.: Kalorimetrische Messungen der thermischen Effekte bei Dehnung von Kautschuk. Kolloid-Z. 172, 1 (1960).

    Article  CAS  Google Scholar 

  54. Dirac, P. A. M.: The principles of quantum mechanics. 4th Edition. London: Oxford Univ. Press 1958.

    Google Scholar 

  55. Dole, M., Hettinger, W. P., Jr., Larson, N. R., Wethington, J. A., Jr.: Specific heat of synthetic high polymers. I. A study of polyethylene including a statistical theory of crystallite length. J. Chem. Phys. 20, 718 (1952).

    Article  Google Scholar 

  56. — Final Report, Specific heat of high polymers, Contract No. DA-11-022-ORD-996, 1958. Dept. of Chem. Northwestern University, Evanston, Illinois.

    Google Scholar 

  57. — Thermodynamic properties of high polymers as a function of their pretreatment as determined by specific heat measurements. Kolloid-Z. 165, 40 (1959).

    Article  CAS  Google Scholar 

  58. — Wunderlich, B.: Melting points and heats of fusion of polymers and copolymers. Makromol. Chem. 34, 29 (1959).

    Article  CAS  Google Scholar 

  59. — Calorimetric studies of states and transitions in solid high polymers. Fortschr. Hochpolymer.-Forsch. 2, 221 (1960).

    CAS  Google Scholar 

  60. Dolling, G., Brockhouse, B. N.: Lattice vibrations in pyrolitic graphite. Phys. Rev. 128, 1120 (1962).

    Article  CAS  Google Scholar 

  61. Douglas, T. B., Harman, A. W.: Relative enthalpy of polytetrafluoroethylene from 0 to 440° C. J. Res. Natl. Bur. Std. 69A, 149 (1965).

    CAS  Google Scholar 

  62. Dunlap, L. H.: Specific heats of poly(vinyl-chloride) compositions. J. Polymer Sci. Part A2, 4, 673 (1966).

    Article  CAS  Google Scholar 

  63. Einstein, A.: Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Physik 22, 180 (1907). For correction see Ann. Physik 22, 800 (1907).

    Google Scholar 

  64. Ewald, P. P.: Der Aufbau der festen Materie und seine Erforschung durch Röntgenstrahlen. In: Geiger-Scheels Handbuch der Physik, Bd. 24. Berlin: Springer 1927.

    Google Scholar 

  65. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936).

    Article  CAS  Google Scholar 

  66. Fainberg, E. Z., Mikhailov, N. V.: Temperature dependence of the specific heat of cellulose fibers. Vysokomolekul. Soedin. Part A 9, 920 (1967).

    CAS  Google Scholar 

  67. Ferry, J. D., Parks, G. S.: Studies on glass. XIII. Glass formation by a hydrocarbon polymer. J. Chem. Phys. 4, 70 (1936).

    Article  CAS  Google Scholar 

  68. Findenegg, G., Wilhelm, E., Kohler, F.: Calorific behavior of poly(tetrafluoroethylene) between 16 and 34°. Monatsh. Chem. 97, 94 (1966).

    Article  CAS  Google Scholar 

  69. Fowler, R. H., Guggenheim, E. A.: Statistical thermodynamics. Cambridge: Cambridge University Press 1949.

    Google Scholar 

  70. Fox, T. G., Loshaek, S.: Influence of molecular weight and degree of cross-linking on the specific volume and glass temperature of polymers. J. Polymer Sci. 15, 371 (1955).

    Article  CAS  Google Scholar 

  71. Frenkel, J.: Kinetic theory of liquids. London: Oxford Univ. Press 1946.

    Google Scholar 

  72. Fukuroi, T., Muto, Y.: Specific heat of tellurium and selenium at very low temperatures. Sci. Rept. Res. Inst. Tôhoku Univ., Ser. A 8, 213 (1956).

    Google Scholar 

  73. Furukawa, G. T., McCoskey, R. E., King, G. J.: Calorimetric properties of polytetrafluorethylene (teflon) from 0° to 365° K. J. Res. Natl. Bur. Std. 49, 273 (1952).

    CAS  Google Scholar 

  74. — — Calorimetric properties of 41° and 122° F polybutadienes. J. Res. Natl. Bur. Std. 51, 321 (1953).

    CAS  Google Scholar 

  75. — — King, G. J.: Thermal properties of some butadiene-styrene copolymers. J. Res. Natl. Bur. Std. 50, 357 (1953).

    CAS  Google Scholar 

  76. — — Reilly, M. L.: Heat capacity of some butadiene-styrene copolymers from 0° to 330° K. J. Res. Natl. Bur. Std. 55, 127 (1955).

    CAS  Google Scholar 

  77. — Reilly, M. L.: Heat capacity of polyisobutylene from 0° to 380° K. J. Res. Natl. Bur. Std. 56, 285 (1956).

    CAS  Google Scholar 

  78. — — Application of precise heat-capacity data to the analysis of the temperature intervals of the NBS (1955) and the international practical temperature scales in the region of 90° K. J. Res. Natl. Bur. Std. 69 A, 5 (1965).

    Google Scholar 

  79. Gast, Th.: Messungen der spezifischen Wärme verschiedener Kunststoffe in Abhängigkeit von der Temperatur. Kunststoffe 43, 15 (1953).

    CAS  Google Scholar 

  80. Gattow, G., Heinrich, G.: Die Umwandlungen der kristallinen Selen-Modifikationen. Z. Anorg. Allgem. Chem. 331, 256 (1964).

    Article  CAS  Google Scholar 

  81. Geil, P. H.: Polymer single crystals. New York: J. Wiley 1963

    Google Scholar 

  82. Genensky, S. M., Newell, G. F.: Vibration spectrum and heat capacity of a chain polymer crystal. J. Chem. Phys. 26, 486 (1957).

    Article  CAS  Google Scholar 

  83. Ginnings, D. C., Corruccini, R. J.: An improved ice calorimeter — the determination of its calibration factor and the density of ice at 0° C. J. Res. Natl. Bur. Std. 38, 583 (1947).

    CAS  Google Scholar 

  84. — Enthalpy, specific heat, and entropy of aluminum oxide from 0° to 900° C. J. Res. Natl. Bur. Std. 38, 593 (1947).

    CAS  Google Scholar 

  85. Godovskii, Yu. K., Lipatov, Yu. S.: Heat capacity of linear polyurethanes. Vysokomolekul. Soedin. Ser. A 10, 32 (1968).

    CAS  Google Scholar 

  86. Goldstein, H.: Classical mechanics. Reading (Mass.): Addison-Wesley Publ. Comp. Inc. 1950.

    Google Scholar 

  87. Gombás, P.: Theorie und Lösungsmethoden des Mehrteilchenproblems der Wellenmechanik. Basel: Birkhäuser 1950.

    Google Scholar 

  88. Gotlib, Yu. Ya., Sochava, I. V.: The theory of the heat capacity of polymers at low temperatures. Vibration spectrum and heat capacity. Dokl. Akad. Nauk USSR 147, 580 (1962).

    CAS  Google Scholar 

  89. Gray, A. P., Brenner, N.: Rapid heat capacity measurement on polymers. Am. Chem. Soc. Div. Polymer Sci. Preprint 6, (2), 956 (1965).

    CAS  Google Scholar 

  90. Grewer, Th., Wilski, H.: Die spezifische Wärme des Polyvinylchlorids. Kolloid-Z. Z. Polymere 226, 1, 45 (1968).

    Google Scholar 

  91. Griskey, R. G., Din, M. W., Foster, G. N., III., Gellner, C. A., Show, J. K. N., VanRiper, G., Waldman, N., Wanger, W. H.: Series of reviews on thermodynamic properties of polymers. Modern Plastics

    Google Scholar 

  92. Part 1: Introduction. 43, 119 (March, 1966)

    Google Scholar 

  93. Part 2: High density polyethylene. 43, 121 (March, 1966)

    CAS  Google Scholar 

  94. Part 3: Isotactic polypropylene. 43, 160 (April, 1966)

    CAS  Google Scholar 

  95. Part 4: Ethylene-propylene copolymer. 43, 245 (May, 1966)

    Google Scholar 

  96. Part 5: Poly(methyl methacrylate). 43, 103 (June, 1966)

    CAS  Google Scholar 

  97. Part 6: Rigid poly(vinyl chloride). 43, 119 (July, 1966)

    Google Scholar 

  98. Part 7: Atactic polystyrene. 44, 165 (Sept., 1966)

    CAS  Google Scholar 

  99. Part 8: Nylon 6–10. 44, 129 (Oct., 1966)

    CAS  Google Scholar 

  100. Part 9: Polytetrafluoroethylene. 44, 134 (April, 1967)

    Google Scholar 

  101. Part 10: Polychlorotrifluoroethylene. 44, 144 (Oct., 1967)

    Google Scholar 

  102. Part 11: Nylon 6–6. 45, 138 (June, 1968).

    CAS  Google Scholar 

  103. — Hubbel, D. O.: Calorimetric behavior of methacrylic polymers. J. Appl. Polymer Sci. 12, 853 (1968).

    Article  CAS  Google Scholar 

  104. Gubler, M. G., Kovacs, A. J.: La structure du polyéthylene consideré comme un mélange de n-paraffines, J. Polymer Sci. 34, 551 (1959).

    Article  CAS  Google Scholar 

  105. Gucker, F. T., Jr., Ford, W. L.: The specific heat of “lucite” (methyl methacrylate polymer). J. Am. Chem. Soc. 60, 2563 (1938).

    Article  CAS  Google Scholar 

  106. Guggenheim, E. A.: Thermodynamics (fourth ed.). Amsterdam: North Holland Publ. Comp. 1959.

    Google Scholar 

  107. Gupta, V. D., Boutin, H., Trevino, S.: Phonon spectra of helical biopolymers. Nature (Lond.) 214, 1325 (1967).

    CAS  Google Scholar 

  108. Gurney, R. W.: Lattice vibrations in graphite. Phys. Rev. 88, 465 (1952).

    Article  CAS  Google Scholar 

  109. Hager, N. E., Jr.: Thin heater calorimeter. Rev. Sci. Instr. 35, 618 (1964).

    Article  CAS  Google Scholar 

  110. Halpern, C., Moffat, R. J., Olsen, O.: Bibliography of temperature measurement. NBS Monograph 27 (1961), Suppl. 1 (1963), Suppl. 2 (1966).

    Google Scholar 

  111. Hamada, F., Wunderlich, B., Sumida, T., Hayashi, S., Nakajima, A.: Density and heat of fusion of folded-chain polyethylene crystals. J. Phys. Chem. 72, 178 (1968).

    Article  CAS  Google Scholar 

  112. Harrison, D. E.: Growth morphology of hexagonal selenium at high pressures. J. Appl. Phys. 36, 3150 (1965).

    Article  CAS  Google Scholar 

  113. Hayakawa, R., Wada, Y.: Statistical mechanical treatment of lattice vibration of long chain crystals in molecular field approximation. Rept. Prog. Polymer Phys. (Japan) 11, 215 (1968).

    Google Scholar 

  114. Heinze, D.: Physikalische Charakterisierung von Copolymeren und Polymergemischen. Makromol. Chem. 101, 166 (1967); see page 182.

    Article  CAS  Google Scholar 

  115. Hellmuth, E., Wunderlich, B.: Superheating of linear high polymer polyethylene crystals. J. Appl. Phys. 36, 3039 (1965).

    Article  CAS  Google Scholar 

  116. — — Rankin, J. M., Jr.: Superheating of linear high polymers. Polytetrafluoroethylene. Appl. Polymer Symp. 2, 101 (1966).

    Google Scholar 

  117. Hellwege, K. H., Knappe, W., Semjonow, V.: Quasistationäre Messung der spezifischen Wärme und der Wärmeleitfähigkeit an Kunststoffen. Z. Angew. Phys. 11, 285 (1959).

    CAS  Google Scholar 

  118. — — Wetzel, W.: Spezifische Wärme von Polyolefinen und anderen Hochpolymeren im Temperaturbereich von 30–180° C. Kolloid-Z. 180, 126 (1962).

    Article  CAS  Google Scholar 

  119. Hendus, H.: 1962 (unveröffentlicht).

    Google Scholar 

  120. Henley, E. M., Thirring, W.: Elementary quantum field theory. New York: McGraw-Hill Book Comp. 1962.

    Google Scholar 

  121. Hermann, A. (Hrsg.): Dokumente der Naturwissenschaften, Abt. Physik, Bd. 8: Die Quantentheorie der spezifischen Wärme. München: Battenberg 1967.

    Google Scholar 

  122. Herzberg, G.: Infrared and raman spectra of polyatomic molecules. Princeton (N. J.): D. van Nostrand Comp. 1945.

    Google Scholar 

  123. — Spectra of diatomic molecules. Princeton (N. J.): D. van Nostrand Comp. 1950.

    Google Scholar 

  124. Heuse, W.: Kalorimetrische Prüfung von Kunststoffen. Kunststoffe 39, 41 (1949).

    CAS  Google Scholar 

  125. Hirai, N., Eyring, H.: Bulk viscosity of liquids. J. Appl. Phys. 29, 810 (1958).

    Article  CAS  Google Scholar 

  126. — — Bulk viscosity of polymeric systems. J. Polymer Sci. 37, 51 (1959).

    Article  CAS  Google Scholar 

  127. Hirschfelder, J. O., Curtis, C. F., Bird, R. B.: Molecular theory of gases and liquids. New York: John Wiley Ltd. 1964.

    Google Scholar 

  128. Hoare, F. E., Jackson, L. C., Kurti, N. (Eds.): Experimental cryophysics. London: Butterworths 1961.

    Google Scholar 

  129. Hoeve, C. A. J.: Unperturbed chain dimensions of polymeric chains. J. Chem. Phys. 32, 888 (1960).

    Article  CAS  Google Scholar 

  130. Hoffman, J. D.: The specific heat and degree of crystallinity of polychlorotrifluoroethylene. J. Am. Chem. Soc. 74, 1696 (1952).

    Article  Google Scholar 

  131. Holzmüller, W., Tautz, H., Seifert, K.: Messungen der Wärmeleitfähigkeit und der spezifischen Wärme von Spritzgußmassen. Plaste Kautschuk 9, 264 (1962).

    Google Scholar 

  132. Houston, W. V.: Lattice vibrations and specific heat of diamond. Z. Naturforsch. 3a, 607 (1948).

    CAS  Google Scholar 

  133. Hove, L. van: The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189 (1953).

    Article  Google Scholar 

  134. Ichimura, H.: On the specific heat of the natural rubber. J. Phys. Soc. Japan 3, 305 (1948).

    Article  CAS  Google Scholar 

  135. Isaacs, L. L., Garland, C. W.: Heat capacity of crystalline polyethylene from 1.8° K to 5.3° K. J. Phys. Chem. Solids 23, 311 (1962).

    Article  CAS  Google Scholar 

  136. Jaffe, M., Wunderlich, B.: Melting of polyoxymethylene. Kolloid-Z. Z. Polymere 216, 203 (1967).

    Article  Google Scholar 

  137. Jagodzinski, H.: Kristallographie. Encyclopedia of physics, Vol. 7. Part A (Ed. by Flügge, S.). Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  138. Jannink. G,: Conformation and normal frequency distribution of polymer chains. J. Polymer Sci., A2, 6, 529 (1968).

    Google Scholar 

  139. Kanig, G.: Das freie Volumen und die Änderung des Ausdehnungskoeffizienten und der Molwärme bei der Glasübergangstemperatur von Hochpolymeren. Kolloid-Z. Z. Polymere 233, 829 (1969).

    Article  CAS  Google Scholar 

  140. Karasev, A. N.: Temperature effect on specific heat of some polymers. Plasticheskie Massy 1967, 52.

    Google Scholar 

  141. Karasz, F. E., Bair, H. E., O'Reilly, J. M.: Thermal properties of atactic and isotactic polystyrene. J. Phys. Chem. 69, 2657 (1965).

    CAS  Google Scholar 

  142. — O'Reilly, J. M.: Wide temperature range adiabatic calorimeter. Rev. Sci. Instr. 37, 255 (1966).

    Article  CAS  Google Scholar 

  143. — Bair, H. E., O'Reilly, J. M.: Thermodynamic properties of poly(4-methyl-pentene-1). Polymer 8, 547 (1967).

    Article  CAS  Google Scholar 

  144. — — — Thermodynamic properties of poly(2,6-dimethyl-1,4-phenylene ether) J. Polymer Sci. Part A2, 6, 1141 (1968).

    Article  CAS  Google Scholar 

  145. Kitagawa, T., Miyazawa, T.: Interchain potential, frequency distribution and specific heat of polyoxymethylene crystal. Rep. Prog. Polymer Phys. Japan 9, 175 (1966).

    Google Scholar 

  146. — — Frequency distribution of crystal vibrations and specific heat of polyethylene. Repts. Progr. Polymer Phys. Japan 8, 53 (1965): recently refined and reported at the symposium on High Polymers, Fukuoka, Japan (1967).

    Google Scholar 

  147. — — Inelastic-scattering cross section of neutrons by crystal vibrations of polyethylene. J. Chem. Phys. 47, 337 (1967).

    Article  CAS  Google Scholar 

  148. — — Cross-section for multi-phonon scattering of neutrons by crystalline polyethylene. Polymer Letters 6, 83 (1968).

    Article  CAS  Google Scholar 

  149. — — Interchain potential, frequency spectrum, specific heat and root mean squared displacements in polyethylene crystal. Rep. Progr. Polymer Phys. Japan 11, 219 (1968).

    Google Scholar 

  150. Kittel, C.: Quantum theory of solids. New York: John Wiley Ltd. 1963.

    Google Scholar 

  151. Kolesov, V. P., Paukov, I. E., Skuratov, S. M.: Free energy in the polymerization of lactams under standard conditions (low temperature heat capacities of lactams and of potassium chloride). Zh. Fiz. Khim. 36, 770 (1962).

    CAS  Google Scholar 

  152. Komatsu, K., Nagamiya, T.: Theory of the specific heat of graphite. J. Phys. Soc. Japan 6, 438 (1951).

    Article  CAS  Google Scholar 

  153. — Particle-size effect of the specific heat of graphite at low temperatures. J. Phys. Chem. Solids 6, 380 (1958).

    Article  CAS  Google Scholar 

  154. — Interpretation of the specific heat of various graphites at very low temperatures. J. Phys. Chem. Solids 25, 707 (1964).

    Article  CAS  Google Scholar 

  155. Koplin, H.: Spezifische Wärme von reinem und weichgemachtem Polystyrol. Dissert. Techn. Hochschule Aachen 1962.

    Google Scholar 

  156. Kothari, L. S., Tewary, V. K.: Calculations on the low-temperature specific heat of selenium and tellurium. J. Chem. Phys. 38, 317 (1963).

    Article  Google Scholar 

  157. Kraftmakher, Ya. A., Shestopal, V. O.: Heat capacity of graphite at 1750 to 2850° K. Zh. Prikl. Mekhan. i Tekhn. Fiz. 1965, 170.

    Google Scholar 

  158. Krimm, S., Liang, C. Y., Sutherland, G. B. B. M.: Infrared spectra of high polymers; II. Polyethylene. J. Chem. Phys. 25, 549 (1956).

    Article  CAS  Google Scholar 

  159. — Infrared spectra of high polymers. Fortschr. Hochpolym. Forsch. 2, 51 (1960).

    CAS  Google Scholar 

  160. Krummhansl, J., Brooks, H.: The lattice vibration specific heat of graphite. J. Chem. Phys. 21, 1663 (1953).

    Article  Google Scholar 

  161. Kuroda, T.: Physical properties of fluorocarbon plastics. I. Transition temperature of polytetrafluoroethylene. Nagoya Kôgyô Gijutsu Shikensho Hôkoku 5, 257 (1956).

    CAS  Google Scholar 

  162. Launay, J. de: The theory of specific heats and lattice vibrations. Solid State Physics, Vol. 2 (Ed. by Seitz, F., Turnbull, D.). New York-London: Academic Press Inc. (1956).

    Google Scholar 

  163. Lebedev, B. V., Rabinovich, I. B., Budarina, V. A.: Heat capacity of vinyl chloride, polyvinyl chloride, and polyvinylidene chloride in the region of 60 to 300° K. Vysokomolekul. Soedin. Ser. A 9, 488 (1967).

    Google Scholar 

  164. — — Martynenko, L. Ya.: Thermodynamics of vinyl series monomers and polymers. II. Heat capacities and thermodynamic functions of acrylonnitrile and polyacrylonitrile. Vysokomolekul. Soedin. Ser. A. 9, 1640 (1967).

    CAS  Google Scholar 

  165. LeBlanc, M., Kröger, M.: Die thermischen und kalorischen Größen des Kautschuks und der kautschukähnlichen Substanzen. Z. Elektrochem. 34, 241 (1928).

    CAS  Google Scholar 

  166. Leibfried, G.: Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle. Encyclopedia of Physics, Vol. VII, Part 1 (Ed. by Flügge, S.). Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  167. — Ludwig, W.: Theory of anharmonic effects in crystals. Solid State Physics, Vol. 12 (Ed. by Seitz, F., Turnbull, D.). New York-London: Academic Press Inc. 1961.

    Google Scholar 

  168. Li, S.-H.: Physique moléculaire. Cohésion et degré de polymérisation des grosses molécules de polystyrolène d'après leurs chaleurs spécifiques. Compt. Rend. Acad. Sci. Paris 232, 821 (1951).

    Google Scholar 

  169. Liberti, F., Wunderlich, B.: Melting of polycaprolactam. J. Polymer Sci. Part A2, 6, 833 (1968).

    CAS  Google Scholar 

  170. Lifson, S.: Neighbor interactions and internal rotations in polymer molecules. III. Statistics of interdependent rotations and their application to the polyethylene molecule. J. Chem. Phys. 30, 964 (1959).

    Article  CAS  Google Scholar 

  171. Lin, T. P., Koenig, J. L.: A method for the complete vibrational analysis of the isolated polyethylene chain. J. Mol. Spectr. 9, 228 (1962).

    Article  CAS  Google Scholar 

  172. Linton, W. H., Goodman, H. H.: Physical properties of high molecular weight acetal resins. J. Appl. Polymer Sci. 1, 179 (1959).

    Article  CAS  Google Scholar 

  173. Lonsdale, K.: Experimental study of X-ray scattering in relation to crystal dynamics. Rep. Progr. Phys. 9, 256 (1943).

    Article  CAS  Google Scholar 

  174. — Geiger counter measurements of Bragg and diffuse scattering of X-rays by single crystals. Acta Cryst. 1, 12 (1948).

    Article  CAS  Google Scholar 

  175. — Vibration amplitudes of atoms in cubic crystals. Acta Cryst. 1, 142 (1948).

    Article  CAS  Google Scholar 

  176. Ludwig, W.: Recent developments in lattice theory. Springer Tracts in Modern Physics, Vol. 43 (Ed. Höhler, G.). Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  177. Lynch, J. E., Summerfield, G. C., Feldkamp, L. A., King, J. S.: Neutron scattering in normal and deuterated polyethylene. J. Chem. Phys. 48, 912 (1968).

    Article  CAS  Google Scholar 

  178. Magill, J. H., Pollack, S. S., Wyman, D. P.: Glass temperature and crystal modification of linear polyethylene. J. Polymer Sci. Part A, 3, 3781 (1965).

    CAS  Google Scholar 

  179. Mandelkern, L., Price, J. M., Gopalan, M., Fatou, J. G.: Sizes and interfacial free energies of crystallites formed from fractionated linear polyethylene. J. Polymer Sci. Part A2, 4, 385 (1966).

    Article  CAS  Google Scholar 

  180. Maradudin, A. A.: Theoretical and experimental aspects of the effect of point defects and disorder on the vibrations of crystals (I) and (II) Solid State Physics, Vol's. 18, 19 (Ed. by Seitz, F., Turnbull, D.). New York-London: Academic Press Inc. 1966 and 1967.

    Google Scholar 

  181. — Weiss, G. H.: On the vibrations of a generalized diatomic lattice. J. Chem. Phys. 29, 631 (1958).

    Article  CAS  Google Scholar 

  182. — Montroll, E. W., Weiss, G. H., Theory of lattice dynamics in the harmonic approximation. Solid State Phys., Suppl. 3. New York-London: Academic Press Inc. 1963.

    Google Scholar 

  183. Margenau, H., Murphy, G. M.: The mathematics of physics and chemistry, Vol. 1, Second edition. Princeton (N. J.): D. van Nostrand Comp. 1956.

    Google Scholar 

  184. Martin, J. L.: The vibrational spectra of disordered chains. Proc. Roy. Soc. London 254A, 139 (1960).

    Google Scholar 

  185. — The vibrational spectra of disordered chains. Proc. Roy. Soc. London 260A, 139 (1961).

    Google Scholar 

  186. Martin, H., Müller, F. H.: Über die Veränderung in den kristallinen Bereichen bei Polymeren durch Deformation. Kolloid-Z. Z. Polymere 188, 19 (1963), II.

    Article  CAS  Google Scholar 

  187. — — Kalorimetrische Messungen von Kristallisations-und Schmelzvorgängen an Polymeren. Kolloid-Z. Z. Polymere 191, 1 (1963), I.

    Article  CAS  Google Scholar 

  188. — — Spezifische Wärmen und Einfrierwärmen eines Polystyrols mit verschiedener Temperaturbehandlung. Makromol. Chem. 75, 75 (1964).

    Article  CAS  Google Scholar 

  189. Marx, P., Dole, M.: Specific heat of synthetic high polymers. V. A study of the order-disorder transition in polytetraflouroethylene. J. Am. Chem. Soc. 77, 4771 (1955).

    Article  CAS  Google Scholar 

  190. — Smith, C. W., Worthington, A. E., Dole, M.: Specific heat of synthetic high polymers: IV. Polycaprolactam. J. Phys. Chem. 59, 1015 (1955).

    Article  CAS  Google Scholar 

  191. Matsuda, H., Ogita, N.: Coarse-grained quantities in aperiodic systems. (II): Frequency spectra of aperiodic chains. Progr. Theor. Phys. 38, 81 (1967).

    Article  Google Scholar 

  192. Matsuura, H., Miyazawa, T.: Vibrational spectrum and elastic constant of polyethylene glycol chain. Rept. Progr. Polymer Sci. Japan 9, 179 (1966).

    Google Scholar 

  193. Mayer, J. E., Goeppert-Mayer, M.: Statistical mechanics. New York: John Wiley Ltd. 1940.

    Google Scholar 

  194. Mayor, A. R.: Variation de la chaleur spécifique du caoutchouc en fonction de l'elongation. Experientia 3, 26 (1947).

    Article  CAS  Google Scholar 

  195. — Boissonnas, C.-G.: Variation de la chaleur spécifique du caoutchouc en fonction de l'allongement. Helv. Chim. Acta 31, 1514 (1948).

    Article  CAS  Google Scholar 

  196. McSkimin, H. J., Bond, W. L.: Elastic moduli of diamond. Phys. Rev. 105, 116 (1957).

    Article  CAS  Google Scholar 

  197. Melia, T.: Methylmethacrylate and polymethylmethacrylate. Polymer 3, 317 (1962).

    Google Scholar 

  198. — The specific heats of linear high polymers. J. Appl. Chem. 14, 461 (1964).

    Article  Google Scholar 

  199. — Tyson, A.: Thermodynamics of addition polymerization. Part 2: The heat capacity, entropy and enthalpy of isotactic poly(4-methyl-1-pentene). Makromol. Chem. 109, 87 (1967).

    Article  CAS  Google Scholar 

  200. — Clegg, G. A., Tyson, A.: Thermodynamics of addition polymerization. Part 3: The heat capacity, entropy, enthalpy and free energy of a random ethylenepropylene copolymer. Makromol. Chem. 112, 84 (1968).

    Article  CAS  Google Scholar 

  201. Mikhailov, N. V., Fainberg, E. Z., Gorbacheva, V. O.: A study of the molecular structure of stereoregular polymers. I. Isotactic polypropylene. Vysokomolekul. Soedin. 1, 143 (1959).

    CAS  Google Scholar 

  202. — — Molecular structure of synthetic polyamide fibers. XV. Thermochemical properties of polycapramide-polyundecanamide polymers of the polyamide series. Vysokomolekul. Soedin. Vsesoyuz. Khim. Obshchestvo im. D. I. Mendeleeva 1, 201 (1959), II.

    CAS  Google Scholar 

  203. Miller, R. L.: Crystallographic data for various polymers. IV. Durham, N. C.: Chemstrand Research Center, Inc. 1963. See also in: Brandrup, J., Immergut, E. H. (Ed.): Polymer Handbook. New York: Interscience Publ. 1966.

    Google Scholar 

  204. Mischenko, M. I., Samoilov, A. V., Buchatskii, V. A.: Thermal properties of polymers over a wide range of temperatures. Plasticheskie Massy 1966 59.

    Google Scholar 

  205. Miyazawa, T.: Molecular vibrations and structure of high polymers. II. Helical parameters of infinite polymer chains as functions of bond lengths, bond angles, and internal rotation angles. J. Polymer Sci. 55, 215 (1961).

    Article  CAS  Google Scholar 

  206. Miyazawa, T.: Theory of normal vibrations of helical polymers and vibrational assignment of the infrared spectra of isotactic polypropylene. J. Polymer Sci. C7, 59 (1964).

    Google Scholar 

  207. — Kitagawa, T.: Crystal vibrations, specific heat, and elastic moduli of the polyethylene crystal. J. Polymer Sci. B2, 395 (1964).

    Article  Google Scholar 

  208. — Ideguchi, Y.: Chain conformation and infrared frequencies of poly(vinylidene chloride). J. Polymer Sci., B3, 541 (1965).

    Article  Google Scholar 

  209. — Neutron scattering and vibrational spectra of polymer chains and crystals. Rept. of Japan Atomic Energy Research Inst. (to be published 1968).

    Google Scholar 

  210. — Sasaki, K.: Frequency distribution of random chains of polyethylene. Rept. Progr. Polymer Phys. Japan 11, 223 (1968).

    Google Scholar 

  211. Müller, F. H., Martin, H.: Kalorimeter zur Messung spezifischer Wärmen an kleinen Substanzmengen. Kolloid-Z. 172, 97 (1960).

    Article  Google Scholar 

  212. Münster, A.: Statistische Thermodynamik. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  213. Myers, W., Summerfield, G. C., King, J. S.: Neutron scattering in stretch-oriented polyethylene. J. Chem. Phys. 44, 184 (1966).

    Article  CAS  Google Scholar 

  214. Nagai, K.: Local steric hindrances and configurations of linear macromolecules in solutions. I. Formulation. J. Chem. Phys. 31, 1169 (1959).

    Article  CAS  Google Scholar 

  215. Nernst, W.: Der Energieinhalt fester Stoffe. Ann. Physik 36, 395 (1911).

    CAS  Google Scholar 

  216. — Lindemann, F. A.: Spezifische Wärmen und Quantentheorie. Z. Elektrochem. 17, 817 (1911).

    CAS  Google Scholar 

  217. Newell, G. F.: Vibration spectrum of a simple cubic lattice. J. Chem. Phys. 21, 1877 (1953).

    Article  CAS  Google Scholar 

  218. — Specific heat of lamellar crystals. J. Chem. Phys. 23, 2431 (1955).

    Article  CAS  Google Scholar 

  219. — Vibration spectrum of graphite and boron nitride; I. The two-dimensional spectrum. J. Chem. Phys. 24, 1049 (1956).

    Article  CAS  Google Scholar 

  220. — Vibration spectrum of graphite and boron nitride. II. The three-dimensional spectrum. J. Chem. Phys. 27, 240 (1957).

    Article  CAS  Google Scholar 

  221. Nielsen, L. E.: Effect of crystallinity on the dynamic mechanical properties of polyethylenes. J. Appl. Phys. 25, 1209 (1954).

    Article  CAS  Google Scholar 

  222. Noer, R. J., Dempsey, C. W., Gordon, J. E.: Low-temperature specific heats of three plastics. Bull. Am. Phys. Soc. 4, 108 (1959).

    Google Scholar 

  223. Nölting, J.: Ein adiabatisches Kalorimeter zur Untersuchung schlecht wärmeleitender Substanzen im Temperaturbereich von 50 bis 650° C. Ber. Bunsenges. Phys. Chem. 67, 172 (1963).

    Google Scholar 

  224. Odajima, A., Maeda, T., Sato, M., Kitagawa, T., Miyazawa, T.: Thermal expansion of polyethylene crystals in the quasi-harmonic approximation. Rept. Progr. Polymer Phys. Japan 11, 209 (1968).

    Google Scholar 

  225. Olmer, Ph.: Thèses présentées à la Faculté des Sciences de l'université de Paris, 1. Interactions photons-phonons et diffusion des rayons X dans l'aluminium. Paris: Masson et Cie. 1948.

    Google Scholar 

  226. O'Neill, M. J.: The analysis of a temperature-controlled scanning calorimetry. Anal. Chem. 36, 1238 (1964).

    Article  Google Scholar 

  227. — Measurement of specific heat functions by differential scanning calorimetry. Anal. Chem. 38, 1331 (1966).

    Article  Google Scholar 

  228. Opdycke, J., Gay, C., Schmidt, H. H.: Improved precision ice calorimeter. Rev. Sci. Instr. 37, 1010 (1966).

    Article  CAS  Google Scholar 

  229. O'Reilly, J. M., Karasz, F. E., Bair, H. E.: Thermodynamic properties of lexan polycarbonate from 110–560° K. J. Polymer Sci. C6, 109 (1963).

    Google Scholar 

  230. — — — Thermodynamic properties of amorphous and crystalline isotactic poly(methy methacrylate). Thermodynamic properties of amorphous syndiotactic and atactic poly(methyl methacrylate). Bull. Am. Phys. Soc. 9, 285 (1964). See also O'Reilly and Karasz (1966).

    Google Scholar 

  231. — — Specific heat studies of transition and relaxation behavior in polymers. J. Polymer Sci. C14, 49 (1966).

    Google Scholar 

  232. — — Private communication of low temperature heat capacity data between 16 and 84° K on atactic polystyrene (1967).

    Google Scholar 

  233. Passaglia, E., Kevorkian, H. K.: The heat capacity of linear and branched polyethylene. J. Appl. Polymer Sci. 7, 119 (1963) I.

    Article  CAS  Google Scholar 

  234. — — Specific heat of atactic and isotactic polypropylene and the entropy of the glass. J. Appl. Phys. 34, 90 (1963) II.

    Article  CAS  Google Scholar 

  235. Pauling, L., Wilson, E. B.: Introduction to quantum mechanics. New York-London: McGraw-Hill Book Comp., Inc. 1935.

    Google Scholar 

  236. Pavlinov, L. I., Rabinovich, I. B., Okladnov, N. K., Arzhakov, S. A.: Heat capacity of copolymers of methyl methacrylate with methacrylic acid in the region 25–190° C. Vysokomolekul. Soedin. Ser. A9, 483 (1967).

    Google Scholar 

  237. Pechold, W.: Molekülbewegung in Polymeren, I. Teil: Konzept einer Festkörperphysik makromolekularer Stoffe. Kolloid-Z. Z. Polymere 228, 1 (1968).

    Article  Google Scholar 

  238. Peterlin, A., Meinel, G.: Heat content of amorphous regions of drawn linear polyethylene. J. Polymer Sci. B3, 783 (1965).

    Article  Google Scholar 

  239. Pitzer, K. S., Gwinn, W. D.: Energy levels and thermodynamic functions for molecules with internal rotation; I. Rigid frame with attached tops. J. Chem. Phys. 10, 428 (1942).

    Article  CAS  Google Scholar 

  240. — Guttman, L., Westrum, E. F., Jr.: The heat capacity, heats of fusion and vaporization, vapor pressure, entropy, vibration frequencies and barrier to internal rotation of styrene. J. Am. Chem. Soc. 68, 2209 (1946).

    Article  CAS  Google Scholar 

  241. Popov, M. M., Kolesov, V. P.: Determination of the true heat capacity of solids at low temperatures. Zhur. Obshch. Khim. 26, 2385 (1956).

    CAS  Google Scholar 

  242. Prigogine, I., Defay, R.: Traité de Thermodynamique, Tom. I–II réunis (deuxième édition). Liège: Editions Desoer 1950.

    Google Scholar 

  243. Rabinovich, I. B., Pavlinov, L. I., Krylova, G. P.: Heat capacity of deuteropolyethylene. Zh. Fiz. Khim. 41, 2044 (1967).

    CAS  Google Scholar 

  244. Raine, H. C., Richards, R. B., Ryder, H.: The heat capacity, heat of solution, and crystallinity of polythene. Trans. Faraday Soc. 41, 56 (1945).

    Article  CAS  Google Scholar 

  245. Rands, R. D., Jr., Ferguson, W. J., Prather, J. L.: Specific heat and increases of entropy and enthalpy of the synthetic rubber GR-S from 0° to 330° K. J. Res. Natl. Bur. Std. 33, 63 (1944).

    CAS  Google Scholar 

  246. Reese, W., Tucker, J. E.: Thermal conductivity and specific heat of some polymers between 4.5° and 1° K. J. Chem. Phys. 43, 105 (1965).

    Article  CAS  Google Scholar 

  247. — Low temperature excess heat capacity in glassy polymers. J. Appl. Phys. 37, 3959 (1966) I.

    Article  CAS  Google Scholar 

  248. — Low temperature thermal conductivity of amorphous polymers: polystyrene and polymethylmethacrylate. J. Appl. Phys. 37, 864 (1966) II.

    Article  CAS  Google Scholar 

  249. Rehner, J., Jr.: Heat conduction and molecular sructure in rubberlike polymers. J. Polymer Sci. 2, 263 (1947).

    Article  CAS  Google Scholar 

  250. Richardson, M. J.: Thermodynamic behavior of polyethylene single crystals. Trans. Faraday Soc. 61, 1876 (1965).

    Article  CAS  Google Scholar 

  251. Roinishvili, E. Yu., Tavkhelidze, N. N., Akopyan, V. B.: Heat capacity of amorphous and crystalline poly(ethylene terephthalate) at low temperature. Vysokomolekul. Soedin. Ser. B 9, 254 (1967).

    CAS  Google Scholar 

  252. Rosenstock, H. B., Newell, G. F.: Vibrations of a simple cubic lattice (I). J. Chem. Phys. 21, 1607 (1953).

    Article  CAS  Google Scholar 

  253. Ruhemann, M., Simon, F.: Zur Kenntnis der physikalischen Eigenschaften des Kautschuks. Z. Physik. Chem. Leipzig A 138, 1 (1928).

    Google Scholar 

  254. Ruland, W.: X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst. 14, 11 (1961).

    Article  Google Scholar 

  255. Safford, G. J., Naumann, A. W.: Low frequency motions in polymers as measured by neutron inelastic scattering. Fortschr. Hochpolymer. Forsch. 5, 1 (1967).

    Article  CAS  Google Scholar 

  256. Schrödinger, E.: Über die spezifische Wärme fester Körper bei hohen Temperaturen und über die Quantelung von Schwingungen endlicher Amplitude. Z. Physik 11, 170 (1922).

    Article  Google Scholar 

  257. — Spezifische Wärme (theoretischer Teil). In: Geiger Scheel's Handbuch der Physik, Bd. 10. Berlin: Springer 1926.

    Google Scholar 

  258. Scott, R. B., Meyers, C. H., Rands, R. D., Jr., Brickwedde, F. G., Bekkedahl, N.: Thermodynamic properties of 1,3-butadiene in the solid, liquid, and vapor states. J. Res. Natl. Bur. Std. 35, 39 (1945).

    CAS  Google Scholar 

  259. Sharanov, Yu. A., Vol'kenshtein, M. V.: Cooperative effects in the annealing and softening of poly(vinyl acetate). Vysokomolekul. Soedin. 4, 917 (1962).

    Google Scholar 

  260. Simon, F.: Die Bestimmung der freien Energie. In: Geiger-Scheels Handbuch der Physik, Bd. 10. Berlin:Springer 1926.

    Google Scholar 

  261. Slonimskii, G. L., Godovskii, Yu. K.: Temperature dependence of the heat capacity of isotactic polypropylene. Vysokomolekul. Soedin. 7, 685 (1965).

    Google Scholar 

  262. Smith, H. M. J.: The theory of the vibrations and the Raman spectrum of the diamond lattice. Phil. Trans. A 241, 105 (1948).

    Google Scholar 

  263. Smith, C. W., Dole, M.: Specific heat of synthetic high polymers. VII. Polyethylene terephthalate. J. Polymer Sci. 20. 37 (1956).

    CAS  Google Scholar 

  264. Smothers, W. J., Chiang, Y.: Handbook of differential thermal analysis. New York: Chemical Publ. Comp. Inc. 1966.

    Google Scholar 

  265. Sochava, I. V., Trapeznikova, O. N.: The specific heat of chain structures at low temperatures. Dokl. Akad. Nauk. USSR 113, 784 (1957).

    Google Scholar 

  266. — — Internal rotation and heat capacity of a few polymers at low temperatures. Vestn. Leningr. Univ. 13, Ser. Fiz. i Khim. 65 (1958).

    Google Scholar 

  267. — Heat capacity of linear polymers at low temperatures. Dokl. Akad. Nauk. USSR 130, 126 (1960).

    CAS  Google Scholar 

  268. — Specific heat of polymethylmethacrylate and polystyrene at low temperatures. Vestn. Leningr. Univ. 16, Ser. Fiz. i Khim. 2, 70 (1961).

    CAS  Google Scholar 

  269. — Thermal motion in linear polymers at low temperature. Vestn. Leningr. Univ. 19 (10), Ser. Fiz. i Khim. 2, 56 (1964).

    CAS  Google Scholar 

  270. — Trapeznikova, O. N.: Rotation of methylene groups in poly(methyl methacrylate) at low temperature. Vestn. Leningr. Univ. 20, Ser. Fiz. i Khim. 4, 71 (1965).

    Google Scholar 

  271. Southard, J. C., Brickwedde, F. G.: Low temperature specific heats. I. An improved calorimeter for use from 14 to 300° K. The heat capacity and entropy of naphthalene. J. Am. Chem. Soc. 55, 4378 (1933).

    Article  CAS  Google Scholar 

  272. — A modified calorimeter for high temperatures. The heat content of silica, wollastonite and thorium dioxide above 25°. J. Am. Chem. Soc. 63, 3142 (1941).

    Article  CAS  Google Scholar 

  273. Spencer, H. M.: Empirical heat capacity equations of gases and graphite. J. Ind. Eng. Chem. 40, 2152 (1948).

    Article  CAS  Google Scholar 

  274. Sperati, C. A., Starkweather, H. W., Jr.: Fluorine-containing polymers. II. Polytetrafluoroethylene. Fortschr. Hochpolymer.-Forsch. 2, 465 (1961).

    CAS  Google Scholar 

  275. Starkweather, H. W., Jr., Boyd, R. H.: The entropy of melting of some linear polymers. J. Phys. Chem. 64, 410 (1960).

    CAS  Google Scholar 

  276. — Heat capacity of chain polymers at low temperatures. J. Polymer Sci. 45, 525 (1960).

    Article  CAS  Google Scholar 

  277. — Crystalline organization in useful plastics. SPE Trans. 3, 57 (1963).

    CAS  Google Scholar 

  278. Steere, R. C.: Detection of polymer transitions by measurement of thermal properties. J. Appl. Polymer Sci. 10, 1673 (1966).

    Article  CAS  Google Scholar 

  279. Stimson, H. F.: International practical temperature scale of 1948. J. Res. Natl. Bur. Std. 65 A, 139 (1961), Natl. Bur. Std. Monogr. 37 (1961).

    Google Scholar 

  280. Stockmayer, W. H., Hecht, C. E.: Heat capacity of chain polymeric crystals. J. Chem. Phys. 21, 1954 (1953).

    Article  CAS  Google Scholar 

  281. Stull, D. R.: unpublished, but quoted by Boyer, R. F., Spencer, R. S.: Thermal expansion and second-order transition effects in high polymers. J. Appl. Phys. 15, 398 (1944).

    Article  Google Scholar 

  282. Sturtevant, J. M.: In: Weissberger, A. (Ed.): Technique of Organic Chemistry, 3rd Ed., Vol. 1, Part 1, Chapt. X. New York: Interscience Publ. 1959.

    Google Scholar 

  283. Swan, P. R.: Polyethylene unit cell variations with temperature. J. Polymer Sci. 56, 403 (1962).

    Article  CAS  Google Scholar 

  284. — Polyethylene unit cell variations with branching. J. Polymer Sci. 56, 409 (1962).

    Article  CAS  Google Scholar 

  285. Swietoslawski, W.: Microcalorimetry. New York: Reinhold Publ. 1946.

    Google Scholar 

  286. Tadokoro, H., Kobayashi, M., Kawaguchi, Y., Kobayashi, A., Murahashi, S.: Normal vibrations of the polymer molecules of helical configuration. III. Polyoxymethylene and polyoxymethylene-d2. J. Chem. Phys. 38, 703 (1963).

    Article  CAS  Google Scholar 

  287. Tarasov, V. V.: The theory of the specific heat of high polymers. II. Rubber, graphite, Comptes Rend. Acad. Sci. U.R.S.S. 46, 110 (1945).

    CAS  Google Scholar 

  288. — Theory of the specific heat of high polymers. III. Stratified lattices. Compt. Rend. Acad. Sci. U.R.S.S. 54, 795 (1946).

    CAS  Google Scholar 

  289. — Theory of the heat capacity of chain and layer stuctures. Zh. Fiz. Khim. 24, 111 (1950).

    CAS  Google Scholar 

  290. — Heat capacity of chain and layer structures. Zh. Fiz. Khim. 27, 1430 (1953).

    CAS  Google Scholar 

  291. — Anisotropic atomic vibrations and the heat capacity of layer and chain structures. Dokl. Akad. Nauk. S.S.S.R. 100, 307 (1955).

    CAS  Google Scholar 

  292. — New glass-physics experiments. Moscow: Gosstroizdat 1959.

    Google Scholar 

  293. — Yunitskii, G. A.: Theory of the heat capacity of layered-chain structures. Zh. Fiz. Khim. 39, 2077 (1965).

    CAS  Google Scholar 

  294. Tasumi, M., Shimanouchi, T., Miyazawa, T.: Normal vibrations and force constants of polymethylene chain. J. Mol. Spectry. 9, 261 (1962).

    Article  CAS  Google Scholar 

  295. A refined treatment of normal vibrations of polymethylene chain. J. Mol. Spectry. 11, 422 (1963).

    Article  CAS  Google Scholar 

  296. — — Crystal vibrations and intermolecular forces of polymethylene crystals. J. Chem. Phys. 43, 1245 (1965).

    Article  CAS  Google Scholar 

  297. — Krimm, S.: Crystal vibrations of polyethylene. J. Chem. Phys. 46, 755 (1967).

    Article  CAS  Google Scholar 

  298. Tautz, H., Glück, M., Hartmann, G., Leuteritz, R.: Die spezifische Wärme von Hochpolymeren im Temperaturbereich von −150 bis +180° C. Plaste Kautschuk 10, 648 (1963).

    CAS  Google Scholar 

  299. — — — — Die spezifische Wärme von der Vorgeschichte des Materials. Plaste Kautschuk 11, 657 (1964).

    CAS  Google Scholar 

  300. Taylor, W. J.: Average length and radius of normal paraffin hydrocarbon molecules. J. Chem. Phys. 16, 257 (1948).

    Article  CAS  Google Scholar 

  301. Ting, T. W., Li, J. M. C., Thermodynamics for elastic solids; general formulation. Phys. Rev. 106, 1165 (1957).

    Article  CAS  Google Scholar 

  302. Tolman, R. C.: The principles of statistical mechanics. London: Oxford Univ. Press 1938.

    Google Scholar 

  303. Trevino, S., Boutin, H.: Low-energy vibrational modes of polyoxymethylene by neutron scattering. J. Chem. Phys. 45, 2700 (1966).

    Article  CAS  Google Scholar 

  304. — — Studies of low-frequency molecular motions in polymers by neutron inelastic scattering. J. Macromol. Sci. Chem. A1, 723 (1967).

    Google Scholar 

  305. Tucker, J. E., Reese, W.: Heat capacity of polyethylene from 2.5° to 30° K. J. Chem. Phys. 46, 1388 (1967).

    Article  CAS  Google Scholar 

  306. Turdakin, V. A., Tarasov, V. V.: Low temperature heat capacity of poly(diethylsiloxanes) in connection with their physiochemical properties. Tr. Mosk. Khim. Tekhnol. Inst. 49, 8 (1965).

    Google Scholar 

  307. Ueberreiter, K., Nens, S.: Spezifische Wärme, spezifisches Volumen, Temperatur-und Wärmeleitfähigkeit von Hochpolymeren. Teil I:Distyrol und ein hochpolymeres Styrol. Kolloid-Z. 123, 92 (1951).

    Article  CAS  Google Scholar 

  308. — Otto-Laupenmühlen, E.: Spezifische Wärme, spezifisches Volumen, Temperatur-und Wärmeleitfähigkeit von Hochpolymeren — Teil II. Kettenlängenabhängigkeit bei fraktionierten Polystyrolen. Z. Naturforsch. 8a, 664 (1953).

    CAS  Google Scholar 

  309. van der Hoeven, B. J. C., Jr., Keesom, P. H.: Specific heat of various graphites between 0.4 and 2.0° K. Phys. Rev. 130, 1318 (1963).

    Article  Google Scholar 

  310. Victor, A. C.: Heat capacity of diamond at high temperatures. J. Chem. Phys. 36, 1903 (1962).

    Article  CAS  Google Scholar 

  311. Vieweg, R., Gottwald, F.: Über thermische Kenngrößen von Kunststoffen. Kunststoffe 30, 138 (1940).

    CAS  Google Scholar 

  312. Vol'kenshtein, M. V., Ptitsyn, O. B.: The relaxation theory of vitrification. 1. The solution and investigation of the basic equation. Zh. Tekhn. Fiz. 26, 2204 (1956).

    Google Scholar 

  313. — The configurational statistics of polymeric chains. J. Polymer Sci. 29, 441 (1958).

    Article  Google Scholar 

  314. — Sharanov, Yu. A.: Effect of annealing polymer glasses on the temperature dependence of the heat capacity in the softening range. Vysokomolekul. Soedin. 3, 1739 (1961).

    Google Scholar 

  315. Warfield, R. W., Petree, M. C., Donovan, P.: The specific heat of high polymers. SPE Journal 15, 1055 (1959).

    CAS  Google Scholar 

  316. — — Thermodynamic functions of polyethylene. Chem. Ind. (London), 1571 (1961) I; see also: Thermodynamic properties of polyethylene. Makromol. Chem. 51, 113 (1962).

    Google Scholar 

  317. — — Thermodynamic properties of polystyrene and styrene. J. Polymer Sci. 55, 497 (1961) II.

    Article  CAS  Google Scholar 

  318. — Brown, R.: Heat capacity and thermodynamic functions of polyvinylalcohol. Kolloid-Z. 185, 63 (1962).

    CAS  Google Scholar 

  319. — Petree, M. C.: Thermodynamic properties of polymethyl methacrylate and methyl methacrylate. J. Polymer Sci. A 1, 1701 (1963).

    Google Scholar 

  320. — — Thermodynamic properties of polyvinylidene chloride. J. Polymer Sci. 4, 532 (1966).

    CAS  Google Scholar 

  321. Watson, E. S., O'Neill, M. J., Justin, J., Brenner, N.: A differential scanning calorimeter for quantitative differential thermal analysis. Anal. Chem. 36, 1233 (1964).

    Article  CAS  Google Scholar 

  322. Weizel, W.: Lehrbuch der theoretischen Physik; Zweiter Band: Struktur der Materie. 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  323. White, W. P.: The modern calorimeter. New York: Chem. Catalog Co. 1928.

    Google Scholar 

  324. Wilhoit, R. C., Dole, M.: Specific heat of synthetic high polymers. II. Polyhexamethylene adipamide and sebacamide. J. Phys. Chem. 57, 14 (1953).

    Article  CAS  Google Scholar 

  325. — Recent developments in calorimetry. J. Chem. Educ. 44, A 571, A 629, A 685, A 853 (1967).

    Google Scholar 

  326. Wilkinson, R. W., Dole, M.: Specific heat of synthetic high polymers. X. Isotactic and atactic polypropylene. J. Polymer Sci. 58, 1089 (1962).

    Article  CAS  Google Scholar 

  327. Wilski, H.: Spezifische Wärme von Polypropylene. Kunststoffe 50, 335 (1960).

    CAS  Google Scholar 

  328. — Grewer, T.: The specific heat of poly-1-butene. J. Polymer Sci. C 6 33, (1964).

    Google Scholar 

  329. — Die spezifische Wärme von Hochpolymeren. Kolloid-Z. Z. Polymere 210, 37 (1966) I.

    Article  CAS  Google Scholar 

  330. — Kalorimetrische Untersuchungen an Hochpolymeren. Kunststoff-Rundschau 13, 1 (1966) II.

    CAS  Google Scholar 

  331. Wolpert, S., Wunderlich, B.: (1968) (to be published).

    Google Scholar 

  332. Wood, L. A., Bekkedahl. N.: Specific heat of natural rubber and other elastomers above the glass transition temperature. Polymer Letters 5, 169 (1967).

    Article  CAS  Google Scholar 

  333. Worthington, A. E., Marx, P. C., Dole, M.: Calorimetry of high polymers. III. A new type of adiabatic jacket and calorimeter. Rev. Sci. Instr. 26, 698 (1955).

    Article  CAS  Google Scholar 

  334. Wunderlich, B.: Thesis: Thermodynamics of the copolymer-system poly(ethylene-terephthalate sebacate). Dept. of Chemistry, Northwestern University, Evanston, Ill. 1957, Mic 58-4119.

    Google Scholar 

  335. — Dole, M.: Specific heat of synthetic high polymers VIII. Low pressure polyethylene. J. Polymer Sci. 24, 201 (1957).

    Article  CAS  Google Scholar 

  336. — — Specific heat of synthetic high polymers. IV. Poly(ethylene sebacate). J. Polymer Sci. 32, 125 (1958).

    Article  CAS  Google Scholar 

  337. — Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J. Phys. Chem. 64, 1052 (1960).

    CAS  Google Scholar 

  338. — Motion in polyethylene. I. Temperature and crystallinity dependence of the specific heat. J. Chem. Phys. 37, 1203 (1962). II. Vibrations in crystalline polyethylene. Ibid. 1207. III. The amorphous polymer. Ibid. 2429.

    Article  Google Scholar 

  339. — Poland, D.: J. Polymer Sci. 58, 1106 (1962). Discussion to the paper by Wilkinson, R. W., Dole, M.: Specific heat of synthetic high polymers. X. Isotactic and atactic polypropylene. J. Polymer Sci. 58, 1089 (1962).

    Google Scholar 

  340. — Motion in the solid state of high polymers. J. Polymer Sci., C 1, 41 (1963).

    Google Scholar 

  341. — Sullivan, P., Arakawa, T., DiCyan, A. B., Flood, J. F.: Thermodynamics of crystalline linear high polymers. III. Thermal breakdown of the crystalline lattice of polyethylene. J. Polymer Sci. A 1, 3581 (1963).

    Google Scholar 

  342. — The melting of defect polymer crystals. Polymer 5, 611 (1964).

    Article  CAS  Google Scholar 

  343. — Arakawa, T.: Polyethylene crystallized from the melt under elevated pressure. J. Polymer Sci. A 2, 3697 (1964).

    Google Scholar 

  344. — Bodily, D. M., Kaplan, M. H.: Theory and measurements of the glass-transformation interval of polystyrene. J. Appl. Phys. 35, 95 (1964).

    Article  CAS  Google Scholar 

  345. — Specific heat of polyethylene single crystals. J. Phys. Chem. 69, 2078 (1965).

    CAS  Google Scholar 

  346. — Cormier, C. M.: Heat of fusion of polyethylene. J. Polymer Sci. A 2, 5, 987 (1967).

    Google Scholar 

  347. — Jones, L. D.: Heat capacities of solid polymers. J. Macromol. Sci.-Phys. B 3, 67 (1969).

    Google Scholar 

  348. Yasuda, T., Araki, Y.: Effect of pressure on the room-temperature transition of polytetrafluoroethylene and its heat of transition. J. Appl. Polymer Sci. 5, 331 (1961).

    Article  CAS  Google Scholar 

  349. Yoshimori, A., Kitano, Y.: Theory of the lattice vibration of graphite. J. Phys. Soc. Japan 11, 352 (1956).

    CAS  Google Scholar 

  350. Young, J. A., Koppel, J. V.: Phonon spectrum of graphite. J. Chem. Phys. 42, 357 (1965).

    Article  CAS  Google Scholar 

  351. Zachmann, H. G.: Berechnung der Entropie von Kettenmolekülen mit festem Fadenendenabstand und Diskussion des für Hochpolymere charakteristischen Schmelzbereichs. Z. Naturforsch. 19a, 1397 (1964).

    CAS  Google Scholar 

  352. — Spelluci, P.: Der Einfluß des Raumbedarfs der Kristallite auf die Entropie teilkristalliner Hochpolymerer. Kolloid-Z. Z. Polymere 213, 39 (1966).

    Article  CAS  Google Scholar 

  353. Zbinden, R.: Vibrational interaction in chain molecules. J. Mol. Spectr. 3, 653 (1959).

    Article  Google Scholar 

  354. — Infrared spectroscopy of high polymers. New York-London: Academic Press Inc. 1964..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag

About this paper

Cite this paper

Wunderlich, B., Baur, H. (1970). Heat capacities of linear high polymers. In: Heat Capacities of Linear High Polymers. Advances in Polymer Science, vol 7/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0051029

Download citation

  • DOI: https://doi.org/10.1007/BFb0051029

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04763-6

  • Online ISBN: 978-3-540-36177-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics