Skip to main content
Log in

Experimental excess molar volumes of the ternary mixture and comparisonwith several empirical methods

Tert-butylmethylether+1-propanol+nonane at 298.15 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experimental excess molar volumes for the ternary system {x 1MTBE+x 21-propanol+(1–x 1x 2)nonane} and the three involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter.

The ternary mixture shows maximum values around the binary mixture MTBE+nonane and minimum values for the mixture MTBE+propanol. The ternary contribution to the excess molar volume is negative, with the exception of a range located around the rich compositions of 1-propanol.

Several empirical equations predicting ternary mixture properties from experimental binary mixtures have been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MM Mato SM Cebreiro PV Verdes JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 245 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmt7k%3D Occurrence Handle10.1007/s10973-005-0643-4

    Article  CAS  Google Scholar 

  2. MM Mato SM Cebreiro PV Verdes JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 303 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmt74%3D Occurrence Handle10.1007/s10973-005-0651-4

    Article  CAS  Google Scholar 

  3. MM Mato SM Cebreiro PV Verdes AV Pallas JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 317 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmtrY%3D Occurrence Handle10.1007/s10973-005-0653-2

    Article  CAS  Google Scholar 

  4. PV Verdes MM Mato J Salgado JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 323 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmtrk%3D Occurrence Handle10.1007/s10973-005-0654-1

    Article  CAS  Google Scholar 

  5. PV Verdes MM Mato J Salgado JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 329 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmtrg%3D Occurrence Handle10.1007/s10973-005-0655-0

    Article  CAS  Google Scholar 

  6. PV Verdes MM Mato J Salgado X Villaverde JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 333 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmtrs%3D Occurrence Handle10.1007/s10973-005-0656-z

    Article  CAS  Google Scholar 

  7. PV Verdes MM Mato X Villaverde JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 339

    Google Scholar 

  8. MM Mato SM Cebreiro PV Verdes AV Pallas JL Legido MI Paz Andrade (2005) J. Therm. Anal. Cal. 80 345 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmtro%3D Occurrence Handle10.1007/s10973-005-0658-x

    Article  CAS  Google Scholar 

  9. PV Verdes MM Mato J Salgado JL Legido MI Paz Andrade (2005) Fluid Phase Equilib. 232 16 Occurrence Handle1:CAS:528:DC%2BD2MXkt1aguro%3D Occurrence Handle10.1016/j.fluid.2004.12.013

    Article  CAS  Google Scholar 

  10. PV Verdes MM Mato M Illobre SM Cebreiro JL Legido MI Paz Andrade (2004) J. Chem. Eng. Data 49 1703 Occurrence Handle1:CAS:528:DC%2BD2cXnsV2itbg%3D Occurrence Handle10.1021/je049836y

    Article  CAS  Google Scholar 

  11. SM Cebreiro M Illobre MM Mato PV Verdes JL Legido MI Paz Andrade (2002) J. Therm. Anal. Cal. 70 251 Occurrence Handle1:CAS:528:DC%2BD38XnvFWku7w%3D Occurrence Handle10.1023/A:1020634507355

    Article  CAS  Google Scholar 

  12. T Letcher PU Govender (1997) Fluid Phase Equilib. 140 207 Occurrence Handle1:CAS:528:DyaK2sXnvFSgsrs%3D Occurrence Handle10.1016/S0378-3812(97)00160-X

    Article  CAS  Google Scholar 

  13. A Pal G Dass (1999) J. Chem. Eng. Data 44 1325 Occurrence Handle1:CAS:528:DyaK1MXms1Grtro%3D Occurrence Handle10.1021/je990085n

    Article  CAS  Google Scholar 

  14. A Rodríguez J Canosa J Tojo (1999) J. Chem. Thermodyn. 31 1009 Occurrence Handle10.1006/jcht.1999.0506

    Article  Google Scholar 

  15. A Rodríguez J Canosa J Tojo (1999) J. Chem. Eng. Data 44 666 Occurrence Handle10.1021/je990009k

    Article  Google Scholar 

  16. C Berro et al. (1984) Ph.D. Thesis University of Aix-Marseille II France

    Google Scholar 

  17. D Wagner A Heintz (1986) J. Chem. Eng. Data 31 483 Occurrence Handle1:CAS:528:DyaL28XlsVSrsbw%3D Occurrence Handle10.1021/je00046a029

    Article  CAS  Google Scholar 

  18. O Redlich AT Kister (1948) Ind. Eng. Chem. 40 345 Occurrence Handle10.1021/ie50458a036

    Article  Google Scholar 

  19. DA Brandreth SP O’Neil RW Missen (1966) Trans. Faraday Soc. 62 2355 Occurrence Handle1:CAS:528:DyaF28Xks1Whtrc%3D Occurrence Handle10.1039/tf9666202355

    Article  CAS  Google Scholar 

  20. I Nagata K Tamura (1990) J. Chem. Thermodyn. 22 279 Occurrence Handle1:CAS:528:DyaK3cXktlShsLY%3D Occurrence Handle10.1016/0021-9614(90)90199-Z

    Article  CAS  Google Scholar 

  21. F Kohler (1960) Monatsh. Chem. 91 738 Occurrence Handle1:CAS:528:DyaF3MXjtFehtA%3D%3D Occurrence Handle10.1007/BF00899814

    Article  CAS  Google Scholar 

  22. KT Jacob K Fitzner (1977) Thermochim. Acta 18 197 Occurrence Handle1:CAS:528:DyaE2sXmtFekuw%3D%3D Occurrence Handle10.1016/0040-6031(77)80019-1

    Article  CAS  Google Scholar 

  23. C Colinet et al. (1967) Ph.D. Thesis University of Grenoble France

    Google Scholar 

  24. JB Knobeloch CE Schwartz (1962) J. Chem. Eng. Data 7 386 Occurrence Handle1:CAS:528:DyaF38Xksl2qt7k%3D Occurrence Handle10.1021/je60014a020

    Article  CAS  Google Scholar 

  25. CC Tsao JM Smith (1953) Chem. Eng. Prog. Symp. Series 49 107 Occurrence Handle1:CAS:528:DyaG2cXhslWjsg%3D%3D

    CAS  Google Scholar 

  26. WG Toop (1965) Trans. TMS-AIME 223 850

    Google Scholar 

  27. G Scatchard LB Ticknor JR Goates ER McCartney (1952) J. Am. Chem. Soc. 74 3721 Occurrence Handle1:CAS:528:DyaG38XmsFSmuw%3D%3D Occurrence Handle10.1021/ja01135a002

    Article  CAS  Google Scholar 

  28. M Hillert (1980) Calphad 4 1 Occurrence Handle1:CAS:528:DyaL3cXit1Wrsb4%3D Occurrence Handle10.1016/0364-5916(80)90016-4

    Article  CAS  Google Scholar 

  29. AR Mathieson JC Thynne (1957) J. Chem. Soc. 1 3713

    Google Scholar 

  30. TRC Thermodynamic Tables, 1994.

  31. CRC, Handbook of Chemistry and Physics, CRC Press: Boca Raton FL, 2003–2004.

  32. MT Lorenzana JL Legido E Jiménez J Fernández L Pías J Ortega MI Paz Andrade (1989) J. Chem. Thermodyn. 21 1017 Occurrence Handle1:CAS:528:DyaK3cXmsVWkug%3D%3D Occurrence Handle10.1016/0021-9614(89)90088-8

    Article  CAS  Google Scholar 

  33. JL Legido MT Lorenzana E Jiménez J Fernández A Amigo MI Paz Andrade (1990) J. Sol. Chem. 19 1095 Occurrence Handle1:CAS:528:DyaK3cXmtl2jtbg%3D Occurrence Handle10.1007/BF00649454

    Article  CAS  Google Scholar 

  34. JPE Grolier GC Benson (1984) Can. J. Chem. 62 949 Occurrence Handle1:CAS:528:DyaL2cXitFKktrg%3D Occurrence Handle10.1139/v84-156

    Article  CAS  Google Scholar 

  35. JA Riddich WB Bunger TK Sakano et al. (1986) Organic Solvents, 4th Ed. Vol. II Wiley and Sons New York

    Google Scholar 

  36. IUPAC, Pure and Appl. Chem., 58 (1986) 1677.

  37. DW Marquardt (1963) J. Soc. Ind. Appl. Math. 2 431 Occurrence Handle10.1137/0111030

    Article  Google Scholar 

  38. P. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill 1969.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paz Andrade M. I..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mato, M.M., Cebreiro, S.M., Legido, J.L. et al. Experimental excess molar volumes of the ternary mixture and comparisonwith several empirical methods. J Therm Anal Calorim 84, 279–283 (2006). https://doi.org/10.1007/s10973-005-7287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7287-2

Keywords

Navigation