Skip to main content
Log in

Detailed study of structural, optical, dielectric and electrical properties of Ni0.7Cd0.3Cr2O4 (NCCO) chromite prepared using sol-gel method

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this report, the new polycrystalline spinel-type chromite Ni0.7Cd0.3Cr2O4 (NCCO) was successfully synthesized by sol-gel process. This sample is characterized by X-Ray diffraction (XRD), optical analysis by DRS spectroscopy and dielectric measurements. The X-ray diffraction (XRD) analysis reveals that the prepared sample is well crystallized in the Fd3̅m space group. Optical results from the reflectance spectrum shows indirect band gap energy that was also evaluated from the reflectance spectra using the Kubelka-Munk function and Marotti’s approach, the Egind is found close to 1.64 eV. The variations of Urbach energy (Eu), the penetration depth (δ), extinction coefficient (K) and refractive index (n) were clearly determined and discussed. The Ac impedance spectroscopy type Agilent model 4294 A was used to examine the dielectric and electrical transport properties over a wide temperature (200 K-400 K) and frequency range (100 Hz to100KHz). The obtained results demonstrate that the electrical conductivity (σ) correlates with the Jonscher power law that indicates a semiconducting behavior and confirm the ′′non-overlapping small polaron tunneling, ′′NSPT′′ model of our sample. The activation energy is estimated to be Ea = 0.529 eV based on the study of continuous conductivity. The behavior of permittivity (ε’,ε”) and the loss coefficient tgδ was attributed to Wagner’s Maxwell theory of interfacial polarization. The imaginary part of the impedance curve (Z′′) shows a dielectric relaxation phenomenon in the present compound. The Nyquist plots show a monotonic decrease in grain resistance (Rg) and grain boundary resistance (Rgb) with increasing temperature. This result confirms that the transport mechanism in the chromite NCCO is governed by the effect of grain boundaries. These analysis prove that our sample may be a good candidate for optoelectronics devices.

Graphical Abstract

Highlights

  • Ni0.7Cd0.3Cr2O4 (NCCO) was successfully synthesized by sol–gel technic.

  • X-ray diffraction (XRD) analysis confirm that our sample is well crystallized in the Fd3̅m group.

  • Reflectance spectrum shows indirect band gap energy that is found close to 1.64 eV.

  • Refraction index of our spinel chromite NCCO is n = 1.7.

  • Electrical conductivity (σ) correlates with the Jonscher power law and confirm the non-overlapping small polaron tunneling, “NSPT” model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

-This paper has not been published before; that it is not under consideration for publication anywhere else.

- The publication of this work has been approved by all co-authors, if any, as well as by the responsible authorities.

-The publisher will not be held legally responsible should there be any claims for compensation.

Code availability

-The preparation of sample under supervision JK was done in the Research Unit ofValuation and Optimization of Resource, Faculty of Science and Technology of Sidi Bouzid.

-Structural and morphology analysis was done under supervision JK and MLB at Prince Sattam Bin Abdulaziz University.

-Dielectric and optical measurements was made on Laboratory of Physics of Materials and Nanomaterials Applied to the Environment (LaPhyMNE), Faculty of Sciences of Gabes under supervision JK and KK.

References

  1. Narang SB, Pubby K (2021) Nickel Spinel Ferrites: A review Author links open overlay panel. J Magn Magn Mater 519:167163

    Article  CAS  Google Scholar 

  2. Zakrzewska K (2001) Mixed oxides as gas sensors. J Thin Solid Films 391:229–235

    Article  CAS  Google Scholar 

  3. Tamaki J, Naruo C, Yamamoto Y, Matsuoka M (2002) Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. J Sens Actuators B: Chem 83:190–194

    Article  CAS  Google Scholar 

  4. Kim BN, Hiraga K, Merita K, Sakka Y (2001) A high-strain-rate superplastic ceramic. Nature 413:288–291

    Article  CAS  Google Scholar 

  5. Wang J, Wang B, Feng A, Jia Z, Wu G (2020) Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J Alloy Compd 834:155092

    Article  CAS  Google Scholar 

  6. Šutka A, Gross KA (2016) Spinel ferrite oxide semiconductor gas sensors. J Sens Actuators B Chem 222:95

    Article  Google Scholar 

  7. Sharma R, Thakur P, Sharma P, Sharma V (2017) Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J Alloy Compd 704:7

    Article  CAS  Google Scholar 

  8. Amiri S, Shokrollahi H (2013) Mater. Sci Eng 33:1

    CAS  Google Scholar 

  9. Kershi RM (2020) Spectroscopic, elastic, magnetic and optical studies of nanocrystallite and nanoferro-fluids Co ferrites towards optoelectronic applications. J Mater Chem Phys 248:122941

    Article  CAS  Google Scholar 

  10. N.R.R.A.M.R.R (2017) DhineshbabuVettumperumalNarendrakumarAnimalaKanna. Adv Sci Eng Med 9:377

    Google Scholar 

  11. Oumezzine E, Hcini S, Baazaoui M, Hlil EK, Oumezzine M (2015) Structural, magnetic and magnetocaloric properties of Zn0.6 − xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. J Powder Technol 278:189

    Article  CAS  Google Scholar 

  12. George K, Sugunan S (2008) Nickel substituted copper chromite spinels: preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. J Catal Commun 9:2149

    Article  CAS  Google Scholar 

  13. Javed M, Khan AA, Kazmi J, Mohamed MA, Khan MN, Hussain M, Bilkees R (2021) Dielectric relaxation and small polaron hopping transport in sol-gel-derived NiCr2O4 spinel chromite. J Mater Res Bull 138:111242

    Article  CAS  Google Scholar 

  14. Souifi K, Nasri M, Charguia R, Hcini S, Alzahrani B, Bouazizi ML, Dhahri E, Hlil EK, Khelifi J (2021) Study of critical magnetic behavior around the ferromagnetic–paramagnetic phase transition of the half-doped perovskite Nd0.5Ba0.5CoO3. J Appl Phys A 127:848

    Article  CAS  Google Scholar 

  15. Nasri M, Khelifi J, Alzahrani B, Bouazizi ML, Dhahri E, Hlil EK (2022) The Influence of Sb2O3 Phase on Critical Behavior of La0.6Sr0.4MnO3/x (Sb2O3)(x= 0, 0.7 and x= 0.18) Ceramic Composites. J Low Temp Phys 206:148

    Article  CAS  Google Scholar 

  16. Loghman-Estarki MR, Torkian S, Amini Rastabi R, Ghasemi A (2017) Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5−xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J Magn Magn Mater 442:163

    Article  CAS  Google Scholar 

  17. Ghasemi A, Loghman-Estarki MR, Torkian S, Tavoosi M (2019) The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method. J Compos B 175:107179

    Article  CAS  Google Scholar 

  18. Ghasemi A, Estarki MRL, Torkian S, Gordani GR, Adv J (2020) Mater Eng 39(2):121

    Google Scholar 

  19. El Nahrawy AM, Abou Hammad AB, Mansour AM (2021) Structural investigation and optical properties of Fe, Al, Si, and Cu–ZnTiO3 nanocrystals. J Phys Scr 96:115801

    Article  Google Scholar 

  20. El Nahrawy AM, Hemdan BA, Mansour AM, Elzwawy A, Abou AB (2021) Hammad, ntegrated use of nickel cobalt aluminoferrite/Ni2+ nano-crystallites supported with SiO2 for optomagnetic and biomedical applications. J Mater Sci Eng 274:115491

    Article  CAS  Google Scholar 

  21. Mansour AM, Abou Hammad AB, El Nahrawy AM (2021) NanoStruct Nano-Objects 25:100646

    Article  CAS  Google Scholar 

  22. Hankarea PP, Jadhava SD, Sankpala UB, Chavana SS, Waghmareb KJ, Chougule BK (2009) Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method J Alloy Compd 475:926

    Article  Google Scholar 

  23. Ebrahimi SAS, Masoudpanah SM (2014) Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method. J Magn Magn Mater 357:77

    Article  Google Scholar 

  24. Abbasi A, Hamadanian M, Salavati-Niasari M, Mortazavi-Drazkollah S (2017) Facile size-controlled preparation of highly photocatalytically active ZnCr2O4 and ZnCr2O4/Ag nanostructures for removal of organic contaminants. J Colloid Interface Sci 500:276–284

    Article  CAS  Google Scholar 

  25. Sawada Y, Kimura S, Watanabe K, Ueda H (2014) High-field optical spectroscopy of the chromium spinel CdCr2O4. J Phys: Conf Ser 568:042028

    Google Scholar 

  26. Stefanov P, Avramova I, Stoichev D, Radic N, Grbic B, Marinova T (2005) Characterization and catalytic activity of Cu–Co spinel thin films catalysts. J Appl Surf Sci 245:65–72

    Article  CAS  Google Scholar 

  27. Fino D, Russo N, Saracco G, Specchia V (2006) Catalytic removal of NOx and diesel soot over nanostructured. J Catal 242:38

    Article  CAS  Google Scholar 

  28. Słoczyn´ski J, Zio´łkowski J, Grzybowska B, Grabowski R, Jachewicz D, Wcisło K, Gengembre L (2006) Oxidative Dehydrogenation of Propane on NixMg1-xAl2O4 and NiCr2O4 Spinels. J Catal 242:38–47

    Google Scholar 

  29. Kocsis V, Bordacs S, Varjas D, Penc K, Abouelsayed A, Kuntscher CA, Ohgushi K, Tokura Y, Kezsmarki I (2013) Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu). J Phys Rev B 87:064416

    Article  Google Scholar 

  30. Núñez-Gonzáleza R, Antúnez-García J, Durán A, Galván DH, Posada-Amarillas A (2018) Electronic structure and optical properties of the new β-CdCr2O4 phase. J Comput Mater Sci 150:405

    Article  Google Scholar 

  31. Chouaibi H, Khelifi J, Benali A, Dhahri E, Valente MA, koumina A (2020) Improved conductivity and reduced dielectric loss of Cu- substituted NiFe2O4 for high frequency applications. J Alloy Compd 839:155601

    Article  CAS  Google Scholar 

  32. Bakar SA, Soltani N, Yunus WMM, Saion E, Bahrami A (2014) Structural and paramagnetic behavior of spinel NiCr2O4 nanoparticles synthesized by thermal treatment method: Effect of calcination temperature. Solid State Commun 192:15

    Article  CAS  Google Scholar 

  33. Abutalib MM, Rajeh A (2020) Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical, and electrical properties of PAM/PEO composite. J Phys B: Condens Matter 578:411796

    Article  CAS  Google Scholar 

  34. Dinkar DK, Das B, Gopalan R, Singh B, Dehiya J (2018) Mater Chem Phys 70:76

  35. Adeleke JT, Theivasanthi T, Thiruppathi M, Swaminathan M, Akomolafe T, Alabi AB (2018) J Appl Surf Sci 195:200

  36. Dhibi H, Rejaiba O, Khelifi J, Nasri M, Khirouni K, Bouazizi ML, Hlil EK (2023) Comprehensive Investigation of Structural, Morphologic, Optical, Dielectric and Electrical of Ni0.3Cd0.7Cr2O4 Chromite to Optoelectronic Application, J Inorg Organometall Polym Mater. https://doi.org/10.1007/s10904-023-02703-y

  37. Sepelak V, Bergmann I, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, S.J.Campbell KD, Becker (2007) Nanocrystalline Nickel Ferrite, NiFe2O4: Mechanosynthesis, Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Magnetic Behavior. J Phys Chem C 111:5026–5033

    Article  CAS  Google Scholar 

  38. Amir M, Gungunes H, Slimani Y, Tashkandi N, el Sayed HS, Aldakheel F, Sertkol M, Sozeri H, Manikandan A, Ercan I et al. (2018) Mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J Supercond Nov Magn 32:557–564

    Article  Google Scholar 

  39. Abaira R, Dammak T, Matoussi A, Younes A (2016) Structural and optical properties of Zinc oxide doped by V2O5 synthesized by solid-state reaction. J Superlattices Microstruct 91:365

    Article  CAS  Google Scholar 

  40. Sawaby A (2010) Structure, optical and electrochromic properties of NiO thin films. Phys B: Condens Matter 405:3412

    Article  CAS  Google Scholar 

  41. Kubelka P, Beitrag Ein (1931) zur Optik der Farbanstriche (Contribution to the optic of paint). Z fur technische Physic 12:593

    Google Scholar 

  42. Raddaoui G, Rejaiba O, Nasri M, Khirouni K, Alzahrani B, Bouazizi ML, Khelifi J (2022) Investigation studies of structural, electrical, dielectric, and optical of DyTi0.5Mn0.5O3 multiferroic for optoelectronics applications. J Mater Sci: Mater Electron 1:23

    Google Scholar 

  43. Rejaiba O, Khirouni K, Dhaou MH, Alzahrani B, Bouazizi ML, Khelifi J (2022) Investigation Study of Optical and Dielectric parameters using Absorption and Diffuse Reflectance spectroscopy method on La0.57Nd0.1Sr0.13Ag0.2MnO3 perovskite for optoelectronic application. J Opt Quantum Electron 54:315

    Article  CAS  Google Scholar 

  44. Marotti RE, Guerraa DN, Bellob C, Machadoa G, Dalchielea EA (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. J Sol En Mat Sol Cel 82:85

    Article  CAS  Google Scholar 

  45. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. J Phys Rev 92:1324

    Article  CAS  Google Scholar 

  46. Moyez SA (2018) Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. J Nanopart Res 20:5

    Article  Google Scholar 

  47. Husain S, Keelani AOA, Khan W (2018) Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. Nano-Struct Nano-Objects 15:17–27 https://doi.org/10.1016/j.nanoso.2018.03.002

  48. Nasri M, Rejaiba O, Charguia R, Wederni MA, Al Robei H, Bouazizi ML, Khirouni K, Khelifi J (2022) Temperature and Frequency Dependence of Negative Capacitance, Dielectric and Electric Properties in La 0.57 Nd 0.1 Sr 0.13 Ag 0.2 MnO3 Ceramic. J Low Temp Phys 206:250–268

    Article  CAS  Google Scholar 

  49. Karyaoui M (2015) Some physical investigations on silver-doped ZnO sprayed thin films. Mater Sci Semiconductor Process 30:255

    Article  CAS  Google Scholar 

  50. Tompkins HG, Spectroscopic ellipsometry and reflectometry: a user’s guide, Wiley, (1999).

  51. Suman K, Yang J, Lee C (2010) Temperature dependent transport properties in molybdenum oxide doped α-NPD. J Mater Sci Eng B Solid-State Mater Adv Technol 166:147

    Article  CAS  Google Scholar 

  52. Jonscher AK (1977) The universal dielectric response. J Nat 267:673

    Article  CAS  Google Scholar 

  53. Amar Nath K, Prasad K, Chandra KP, Kulkarni AR (2013) Impedance and a.c. conductivity studies of Ba (Pr1/2Nb1/2) O3 ceramic. Bull Mater Sci 36:591–599

    Article  CAS  Google Scholar 

  54. Abdel-Karim AM, Salama AH, El-Samahy Fatma A (2017) El-Sedik Mervat, Osman Fayez H, Some dielectric properties of novel nano-s-triazine derivatives. J Phys Org Chem 30:12

    Article  Google Scholar 

  55. Rahmouni H, Jemai R, Kallel N, Selmi A, Khirouni K (2010) Titanium effects on the transport properties in La0.7 Sr0.3 Mn1− x TixO3. J Alloy Compd 497:1

    Article  CAS  Google Scholar 

  56. Rejaiba O, Hcini F, Nasri M, Alzahrani B, Bouazizi ML, Hlil EK, Khelifi J, Khirouni K, Dhahri E (2021) Structural, dielectric and electrical properties of Sol–gel auto combustion technic of CuFeCr0.5Ni0.5O4 ferrite. J Mater Sci 56:16044

    Article  CAS  Google Scholar 

  57. Moutia N, Oueslati A, Ben Gzaiel M, Khirouni K (2016) Crystal structure and AC conductivity mechanism of [N(C3H7)4]2CoCl4 compound, Physica E Low Dimens. Syst Nanostruct 83:88

    CAS  Google Scholar 

  58. Kotkata MF, Abdel-Wahab FA, Maksoud HM (2011) Investigations of the conduction mechanism and relaxation properties of semiconductorSmdopeda-Se films, J. Phys. D: Appl. Phys. 39 (2006) 2059.electrical and dielectric properties of LaFeO3. J Adv Appl Sci Res 2:503

    Google Scholar 

  59. Hcini F, Hcini S, Alzahrani B, Zemni S, Bouazizi ML (2020) Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2-xCrxO4 ferrites. J Appl Phys A 126:362

    Article  CAS  Google Scholar 

  60. Singh NK, Panigrahi A, Chaudhary RNP (2001) Structural and dielectric properties of Ba5EuTi3−xZrxNb7O3. 0 relaxor Ferroelectr, J Mater Lett 50:1

    CAS  Google Scholar 

  61. Maxwell JC, Electricity and Magnetism (1973) Oxford University Press, London

  62. Wagner KW (1913) Ann Phys 40:817

  63. Hsini M, Hamdaoui N, Hcini S, Bouazizi ML, Zemni S, Beji L (2017) Effect of iron doping at Mn-site on complex impedance spectroscopy properties of Nd0.67Ba0.33MnO3 perovskite. J Phase Transit 90:1382701

    Google Scholar 

  64. Massoudi J, Bouekkeze D, Bougoffa A, Khirouni K, Dhahri E, Bessais L (2020) Adv Powder Technol 31:4714–4730

    Article  CAS  Google Scholar 

  65. Oumezzine E, Hcini S, Rhouma FIH et al. (2017) Frequency and temperature dependence of conductance, impedanceand electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J Alloy Compd 726:187–194

    Article  CAS  Google Scholar 

  66. Dhaou MH, Hcini S, Mallah A, Bouazizi ML, Jemni A (2017) Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle. J Appl Phys A 123:8

    Article  Google Scholar 

  67. Shukla A, Choudhary RNP, Thakur AK (2009) J Phys Chem Solid 70:1401

    Article  CAS  Google Scholar 

  68. Johnson D (2008) ZView: a software program for IES analysis. Version 2.8. Southern Pines, NC: Scribner Associates, Inc.

  69. Hamdaoui N, Kalandaragh YA, Khlifi M, Beji L (2019) Ceram Int 45:16458

    Article  CAS  Google Scholar 

  70. Selmi A, Hcini S, Rahmouni H, Omri A, Bouazizi ML (2017) Dhahri A, Phase Transit. 90:942

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research in the field of scientific research and technology.

Author information

Authors and Affiliations

Authors

Contributions

HD: writing, conceptualization, funding acquisition, formal analysis. OR: conceptualization, funding acquisition, formal analysis, writing—review and editing. JK: conceptualization, formal analysis, writing—review and editing. MN: conceptualization, formal analysis, writing—review and editing. OA: conceptualization, formal analysis, writing—review and editing. KK: funding acquisition, formal analysis. MLB: funding acquisition.

Corresponding author

Correspondence to Omar Rejaiba.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhibi, H., Rejaiba, O., Khelifi, J. et al. Detailed study of structural, optical, dielectric and electrical properties of Ni0.7Cd0.3Cr2O4 (NCCO) chromite prepared using sol-gel method. J Sol-Gel Sci Technol 108, 159–174 (2023). https://doi.org/10.1007/s10971-023-06178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06178-8

Keywords

Navigation