Skip to main content
Log in

Enhanced ferroelectric properties in La-doped BiFeO3 films by the sol-gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

High-quality spin-coated Bi1-xLaxFeO3 (x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) films were successfully produced on fluorine-doped tin oxide (FTO)/glass substrates using a sol-gel approach. The effects of La-doping on the structure, surface morphology, and ferroelectric properties of BFO films were thoroughly investigated. Doping causes structural alterations, which are detected using XRD and Raman spectrum analyses. SEM pictures demonstrate that Bi1-xLaxFeO3 thin films with x = 0.02 have homogeneous fine grains and a greater density, which facilitate the development of ferroelectric characteristics. The XPS study revealed that the incorporation of La3+ significantly reduced the content of Fe2+ and oxygen vacancies, resulting in a massive residual scheme value (2Pr = 280.4 µC/cm2) and an extremely low leakage current density (J = 1.1 × 10–6 A/cm2). Similarly, the dielectric constant and dielectric loss were significantly improved. Furthermore, UV-vis spectroscopy was used to detect the band gap of the BFO samples, which revealed that the La-doped sample had a smaller band gap than pure BFO. The fundamental principles based on oxygen radical concentration have been described, providing a unique platform to develop improved ferroelectric materials with broad applications.

Graphical abstract

The Bi1-xLaxFeO3 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) films: (a) Relationship between the frequency-dielectric constant; (b) Relationship between the frequency-dielectric loss; (c) Leakage current density curves of the BLFO thin films.; (d) Log J–log E characteristics of the BLFO thin films. It can be seen from the figures that La doping effectively improved the dielectric properties and the leakage characteristics of the films.

Highlights

  • La3+ ions were successfully incorporated into BiFeO3 films by sol-gel technology.

  • In terms of leakage current, the doped films are all three orders of magnitude smaller than the undoped one. And the Bi0.98La0.02FeO3 films have significantly higher double remnant polarization (2Pr~280.4 μC/cm2 μC/cm2) values compared to pure BiFeO3 (168.76 μC/cm2).

  • The dielectric properties of the La-doped BiFeO3 films are significantly improved, which corresponds to their increased remanent polarization values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Setter N, Damjanovic D, Eng L (2006) Ferroelectric thin films: review of materials, Properties, and applications. J Appl Phys 100:051606

    Article  Google Scholar 

  2. Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130

    Article  CAS  Google Scholar 

  3. Kim DH, Lee HN, Varela M, Christen HM (2006) Antiferroelectricity in multiferroic BiCrO3 epitaxial films. Appl Phys Lett 89:162904

    Article  Google Scholar 

  4. Lee JH, Murugavel P, Lee D, Noh TW, Jo Y, Jung M-H et al. (2007) Multiferroic properties of epitaxially stabilized hexagonal DyMnO3 thin films. Appl Phys Lett 90:012903

    Article  Google Scholar 

  5. Noda K, Nakamura S, Nagayama J, Kuwahara H (2005) Magnetic field and external-pressure effect on ferroelectricity in manganites: comparison between GaMnO3 and TbMnO3. J Appl Phys 97:10C103

    Article  Google Scholar 

  6. Kothari D, Reddy VR, Gupta A, Sathe V, Banerjee A, Gupta SM et al. (2007) Multiferroeleoic properties of polycrystalline Bi1-xCaxFeO3. Appl Phys Lett 91:202505

    Article  Google Scholar 

  7. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  CAS  Google Scholar 

  8. Wang JN, Li WL, Li XL, Fei WD (2013) Decreased crystallization temperature and improved leakage properties of BiFeO3 thin films induced by Bi2O3 seed layer. Curr Appl Phys 13:2070–2075

    Article  Google Scholar 

  9. Yun KY, Ricinschi D, Kanashima T, Noda M, Okuyama M (2004) Giant ferroelectric polarization beyond 150 μC/cm2 in BiFeO3 thin film. Jpn J Appl Phys 43:L647–L648

    Article  CAS  Google Scholar 

  10. Hatt AJ, Spaldin NA, Ederer C (2010) Strain-induced isosymmetric phase transition in BiFeO3. Phys Rev B 81:054109

    Article  Google Scholar 

  11. Chen LX, Xu C, Fan XL, Cao XH, Ji K, Yang CH (2019) Study on leakage current, ferroelectric and dielectric properties of BFMO thin films with different bismuth contents. J Mater Sci Mater Electron 30:7704–7710

    Article  CAS  Google Scholar 

  12. Huang F, Lu X, Lin W, Cai W, Wu X, Kan Y, Sang H, Zhu J (2007) Multiferroic properties and dielectric relaxation of BiFeO3/Bi3.25La0.75Ti3O12 double-layered thin films. Appl Phys Lett 90:252903

    Article  Google Scholar 

  13. Yu B, Li M, Liu J, Guo D, Pei L, Zhao X (2008) Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J Phys D: Appl Phys 41:065003

    Article  Google Scholar 

  14. Wang Y, Nan CW(2008) Effect of Tb doping on electric and magnetic behavior of BiFeO3thin films. J Appl Phys103:024103

    Article  Google Scholar 

  15. Liu J, Li M, Pei L, Yu B, Guo D, Zhao X (2009) Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition. J Phys D: Appl Phys 42:115409

    Article  Google Scholar 

  16. Naganuma H, Miura J, Okamura S (2008) Ferroelectric electrical and magnetic of Cr, Co, Ni, Cu added polycrystalline BiFeO3 films. Appl Phys Lett 93:052901

    Article  Google Scholar 

  17. Kharel P, Talebi S, Ramachandran B, Dixit A, Naik VM, Sahana MB, Sudakar C, Naik R, Rao MSR, Lawes G (2008) Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J Phys: Condens Matter 21:036001

    Google Scholar 

  18. Lotey GS, Verma NK (2013) Magnetoeletric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater Lett 111:55–58

    Article  CAS  Google Scholar 

  19. Patel R, Sawadh P (2019) Tunable multiferroic properties of cerium doped bismuth ferrite. Nanosyst Phys Chem Math 10:255–265

    Article  CAS  Google Scholar 

  20. Kim WH, Son JH (2013) The effect of La substitution on ferroelectric domain structre and multiferroic properties of epitaxially grown BiFeO3 thin films. Appls Phys Lett 103:132907

    Article  Google Scholar 

  21. Pan D, Zhou M, Lu Z, Zhang H, Liu JM, Wang GH (2016) Local magnetoelectric in La-doped BiFeO3 multiferroic thin films revealed by magnetic-field-assisted probe microscopy. Nanoscale Res Lett 11:318

    Article  Google Scholar 

  22. Pradhan SK, Roul BK (2011) Effect of Gd doping on structural, electrical and magnetic properties of BiFeO3 electroceramic. J Phys Chen Solids 72:1180–1187

    Article  CAS  Google Scholar 

  23. Raghavender AT, Hong NH (2011) Effects of Mn doping on structural and magnetic properties of multiferroic BiFeO3 nanograins made by sol-gel method. J Magn 16:19–22

    Article  Google Scholar 

  24. Sinha AK, Bhushan B, Jagannath Sharma RK, Sen S, Mandal BP, Meena SS, Bhatt P, Prajapat CL, Priyam A, Mishra SK et al. (2019) Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results Phys 13:102299

    Article  Google Scholar 

  25. Karpinsky DV, Troyanchuk IO, Mantyskaya OS, Khomchenko VA, Kholkin AL (2011) Structural stability and magnetic properties of Bi1-xLa(Pr)xFeO3 solid solutions. Solid State Commun 151:1686–1689

    Article  CAS  Google Scholar 

  26. Mukherjee S, Gupta R, Garg A, Bansal V, Bhargava S (2010) Influence of Zr doping on the structure and ferroelectric properties of BiFeO3 thin films. J Appl Phys 107:123535

    Article  Google Scholar 

  27. Yau CY, Palan R, Buchanan RC (2005) Mechanism of polarization enhancement in la-doped Bi4Ti3O12 films. Appl Phys Lett 86:032907

    Article  Google Scholar 

  28. Jee JK, Kim CH, Suh HS, Hong KS (2002) Correlation between internal stress and ferroelectric fatigue in Bi4-xLaxTi3O12 thin films. Appl Phys Lett 80:3593–3595

    Article  Google Scholar 

  29. Yao YY, Song CH, Bao P, Su D, Liu XM, Zhu JS, Wang YN (2004) Doping effect on the dielectric property in bismuth titanate. J Appl Phys 95:3126–3130

    Article  CAS  Google Scholar 

  30. Yan F, Zhu TJ, Lai MO, Lu L (2010) Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin film. Scr Mater 63:780–783

    Article  CAS  Google Scholar 

  31. Semchenko AV, Sidsky VV, Bdikin I, Gaishun VE, Kopyl S, Kovalenko DL, Pakhomov O, Khakhomov SA, Kholkin AL (2021) Nanoscale piezoelectric properties and phase separation in pure and La-doped BiFeO3 films prepared by sol-gel method. Materials 14:1694

    Article  CAS  Google Scholar 

  32. Singh SK, Maruyama K, Ishiwara H (2007) The influence of La-substitution on the micro-structure and ferroelectric properties of chemical-solution-deposited BiFeO3 thin films. J Phys D Appl Phys 44:2705–2709

    Article  Google Scholar 

  33. Reddy BP, Sekhar MC, Park SH (2018) Photocatalytic, magnetic, and electrochemical properties of La doped BiFeO3 nanoparticles. Ceram Int 44:19512–19521

    Article  CAS  Google Scholar 

  34. Chai Z, Tan G, Yue Z, Xue M, Liu Y, Lv L, Ren H, Xia A (2018) Structural transition, defect complex and improved ferroelectric behaiors of Bi0.88Sr0.03Gd0.09Co0.02O3/Co0.02MnxFe2O4 bilayer thin films. Ceram Int 44:15770–15777

    Article  CAS  Google Scholar 

  35. Ravichandran AT, Srinivas J, Manikandan A, Baykal A (2019) Enhanced Magneto-optical and Antibacterial Studies of Bi1− xMgxFeO3 (0.0 ≤ x ≤ 0.15)) Nanoparticles. J Supercond Nov Magn 32(6):1663–1670

  36. Yang Y, Sun JK, Zhu K, Liu YL, Wan L (2008) Structure properties of BiFeO3 films studied by micro-Raman scattering. J Appl Phys 103:093532

    Article  Google Scholar 

  37. Huang JZ, Shen Y, Li M, Nan CW (2011) Structural transitions and enhanced ferroelectricity in Ca and Mn co-doped BiFeO3 thin films. J Appl Phys 110:094106

    Article  Google Scholar 

  38. Singh M, Jang H, Jo M, Ryu S (2006) Polarized Raman Scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl Phys Lett 88:042907

    Article  Google Scholar 

  39. Kossar S, Amiruddin R, Rasool A, Giridharan NV, Dhayanithi D, Santhosh MC (2020) Kumar, Ferroelectric polarization induced memristive behavior in bismuth ferrite (BiFeO3) based memory devices. Superlattice Microst 140:106726

    Article  Google Scholar 

  40. Qian Z, Xiao D, Zhu J, Li Z, Zuo C (1993) X-ray photoelectron spectroscopy and Auger electron spectroscopy syudies of ferroelecric (Pb, La)TiO3 thin films prepared by a muti-ion-beam reactive co-sputtering technique. J Appl Phys 74:224–227

    Article  CAS  Google Scholar 

  41. Wang F, Chen DA, Zhang N, Wang S, Qin L, Sun X, Huang Y (2017) Oxygen vacancies induced by zirconium doping in bismuth ferrite nanparticles for enhanced photocatalytic performance. J Colloid Interf Sci 508:237–247

    Article  CAS  Google Scholar 

  42. Sun W, Zhou Z, Luo J, Wang KE, Li J-F (2017) Leakage current characteristics and Sm/Ti doping effect in BiFeO3 thin films on silicon wafers. J Appl Phys 121:064101

    Article  Google Scholar 

  43. Yan F, Lai M-O, Lu LI, Zhu T-J (2010) Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films. J Phys Chem 114:6994–6998

    CAS  Google Scholar 

  44. Scott JF (2013) Room-temperature multiferroic magnetoelectrics. NPG Asia Matter 5:e27

    Google Scholar 

  45. Pei WJ, Chen J, You D, Zhang QF, Li MK, Lu YM, Fu ZY, He YB (2020) Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films. Appl Surf Sci 530:147194

    Article  CAS  Google Scholar 

  46. Geng FJ, Yang CH, Lv PP, Feng C, Yao Q, Jiang XM, Song P (2016) Effect of Zn2+ doping content on the structure and dielectric tunability of non-stoichiometric [(Na0.7K.0.2Li0.1)0.45Bi0.55]TiO3+δ thin film. J Mater Sci Mater Electron 27:2195–2200

    Article  CAS  Google Scholar 

  47. Yang CH, Sui HT, Wu HT, Hu GD (2015) Na0.5Bi0.5(Ti0.98Zr0.02)O3 thin film with improved performance by modifying annealing atmosphere and Zr doping content. J Alloy Compd 637:315–520

    Article  CAS  Google Scholar 

  48. Chai ZJ, Tan GQ, Yue ZW, Xue MT, Liu Y, Liu Y, Lv L, Ren HJ, Xia A (2018) Structural transition, defect complexes and improved ferroelectric behavior of Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3/Co1-xMnxFe2O4 bilayer thin films. Ceram Int 44:15770–15777

    Article  CAS  Google Scholar 

  49. Lin D-Y, Chen H-Z, Kao M-C, Zhang P-L (2020) Ferroelectric and electrical properties optimization of Mg-doped BiFeO3 flexible multiferroic films. Symmetry 12:1173

    Article  CAS  Google Scholar 

  50. Gao F, Yuan Y, Wang KF, Chen XY, Chen F, Liu J-M (2006) Preparation and photoabsorption charaterization of BiFeO3 nanowires. Appl Phys Lett 89:102506

    Article  Google Scholar 

  51. Basu SR, Martin LW, Chu YH, Gajek M, Ramesh R, Rai RC, Xu X, Musfeldt JL (2008) Photoconductivity in BiFeO3 thin films. Appl Phys Lett 92:091905

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 52073129 and 51762030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qing Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GD., Dai, JQ. & Liang, XL. Enhanced ferroelectric properties in La-doped BiFeO3 films by the sol-gel method. J Sol-Gel Sci Technol 105, 489–499 (2023). https://doi.org/10.1007/s10971-022-06009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06009-2

Keywords

Navigation