Skip to main content
Log in

Study on leakage current, ferroelectric and dielectric properties of BFMO thin films with different bismuth contents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi(1+x)Fe0.95Mn0.05O3 thin films with different bismuth contents (abbreviated as B1+xFMO, x = − 0.05, 0, 0.05, 0.1) were fabricated by chemical solution deposition on ITO/glass substrates. The effects of Bi nonstoichiometry on the microstructure, leakage current, ferroelectric and dielectric properties of BFMO films are investigated. The B1.05FMO and B1.1FMO thin films possess single perovskite structure, while the secondary phase of Bi2Fe4O9 can be observed in BFMO and B0.95FMO thin films. Compared with the other three samples in this work, drastically reduced leakage current can be found in B1.05FMO. For each film, the dominant conduction mechanisms are the Ohmic conduction and the space charge limited conduction at lower electric fields and the interface-limited Fowler–Nordheim tunneling at higher electric regions, respectively. Among the B1+xFMO films (x = − 0.05, 0, 0.05, 0.1), the B1.05FMO film possesses significantly improved electrical properties, reflected by a large remanent polarization (Pr ~ 68.3 µC/cm2), lower dielectric loss (tanδ ~ 0.02), large dielectric constant (εr ~ 210) and high tunability (88%). These results suggest that the 5 mol% excess of Bi is the prior content to get better insulation, optimize ferroelectric as well as dielectric properties of BiFeO3 film, giving reference to modify electrical performances of ferroelectric materials through regulation of volatile element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.L. Jia, K.W. Urban, M. Alexe, D. Hesse, I. Vrejoiu, Science 331, 1420–1423 (2011)

    Article  Google Scholar 

  2. Z.J. Jiang, Y. Nahas, S. Prokhorenko, S. Prosandeev, D. Wang, J. Íñiguez, L. Bellaiche, Phys. Rev. B 97, 104110 (2018)

    Article  Google Scholar 

  3. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  4. C. Kang, J.-H. Park, D. Shen, H. Ahn, M. Park, D.-J. Kim, J. Sol-Gel Sci. Technol. 58, 85–90 (2011)

    Article  Google Scholar 

  5. M. Cerneaa, L. Trupinaa, C. Dragoi, B.S. Vasile, R. Truscac, J. Alloy Compd. 515, 166–170 (2012)

    Article  Google Scholar 

  6. Z.H. Zhou, J.M. Xue, W.Z. Li, J. Wang, Appl. Phys. Lett. 85, 804 (2004)

    Article  Google Scholar 

  7. M.M. Hejazi, E. Taghaddos, A. Safari, J. Mater. Sci. 48, 3511–3516 (2013)

    Article  Google Scholar 

  8. M. Bousquet, J.-R. Duclère, B. Gautier, A. Boulle, A. Wu, S. Députier, D. Fasquelle, F. Rémondière, D. Albertini, C. Champeaux, P. Marchet, M. Guilloux-Viry, P. Vilarinho, J. Appl. Phys. 111, 104106 (2012)

    Article  Google Scholar 

  9. B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, J.F. Scott, X.R. Zeng, H.T. Huang, Adv. Electron Mater. 1, 1500052 (2015)

    Article  Google Scholar 

  10. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, 5 D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  11. A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H.B. Lu, G.Z. Yang, Adv. Mater. 23, 1277–1281 (2011)

    Article  Google Scholar 

  12. S. Murakami, T. Yoshimura, K. Satoh, K. Wakazono, K. Kariya, N. Fujimura, J. Phys. 476, 012007 (2013)

    Google Scholar 

  13. B. Sun, S.S. Mao, S.H. Zhu, G.D. Zhou, Y.D. Xia, Y. Zhao, ACS Appl. Nano Mater. 1, 1291–1299 (2018)

    Article  Google Scholar 

  14. B. Sun, M. Tang, J. Gao, C.M. Li, Chemeletrochem 3, 896–901 (2016)

    Article  Google Scholar 

  15. H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, J. Ma, L.L. Lia, C.-W. Nan, J. Mater. Chem. A 5, 5920–5926 (2017)

    Article  Google Scholar 

  16. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)

    Article  Google Scholar 

  17. Y. Ren, X.H. Zhu, C.Y. Zhang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 40, 2489–2493 (2014)

    Article  Google Scholar 

  18. G.D. Hu, X. Cheng, W.B. Wu, C.H. Yang, Appl. Phys. Lett. 91, 232909 (2007)

    Article  Google Scholar 

  19. Z.J. Chai, G.Q. Tan, Z.W. Yue, W. Yang, M.Y. Guo, H.J. Ren, A. Xia, M.T. Xue, Y. Liu, L. Lv, Y. Liu, J. Alloy Compd. 746, 677–687 (2018)

    Article  Google Scholar 

  20. Y.L. Zhang, W.L. Li, W.P. Cao, T.D. Zhang, T.R.G.L. Bai, Y. Yu, Y.F. Hou, Y. Feng, W.D. Fei, Ceram. Int. 42, 14788–14792 (2016)

    Article  Google Scholar 

  21. J. Yan, G.D. Hu, X.M. Chen, W.B. Wu, C.H. Yang, J. Appl. Phys. 104, 076103 (2008)

    Article  Google Scholar 

  22. M.D. Chermahini, I. Safaee, M. Kazazi, M.M. Shahraki, Ceram. Int. 44, 14281–14285 (2018)

    Article  Google Scholar 

  23. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)

    Article  Google Scholar 

  24. Y.Q. Guo, P. Xiao, R. Wen, Y. Wan, Q.J. Zheng, D.L. Shi, K.H. Lam, M.L. L, D.M. Lin, J. Mater. Chem. C 3, 5811–5824 (2015)

    Article  Google Scholar 

  25. X.B. Xie, S.J. Yang, F.Q. Zhang, S.H. Fan, Q.D. Che, C.J. Wang, X.D. Guo, L.P. Zhang, J. Mater. Sci.: Mater. Electron. 26, 10095–10101 (2015)

    Google Scholar 

  26. P. Du, F. Yang, X.M. Zang, C.C. Qiu, J. Mater. Sci.: Mater. Electron. 25, 5316–5321 (2014)

    Google Scholar 

  27. J.D. Yan, M. Gomi, T. Hattori, T. Yokota, H.H. Song, Thin Solid Films 542, 150–154 (2013)

    Article  Google Scholar 

  28. Y.B. Zi, X.L. Jiao, H.F. Wang, Q.Z. Liu, Z.Z. Yin, F.H. Zhang, Z. Huang, W.B. Wu, Chin. J. Phys. 31, 280–285 (2009)

    Google Scholar 

  29. D. Li, W.C. Zheng, D.X. Zheng, J.L. Gong, L.Y. Wang, C. Jin, P. Li, H.L. Bai, ACS Appl. Mater. Interfaces 8, 3977–3984 (2016)

    Article  Google Scholar 

  30. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M. Siddique, M. Iqbal, M.M. Hasan, AIP Adv. 4, 037113 (2014)

    Article  Google Scholar 

  31. C.M. Raghavan, D. Do, J.W. Kim, W.J. Kim, S.S. Kim, J. Am. Ceram. Soc. 95, 1933–1938 (2012)

    Article  Google Scholar 

  32. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, J. Am. Ceram. Soc. 94, 4291–4298 (2011)

    Article  Google Scholar 

  33. C.M. Raghavan, J.W. Kim, S.S. Kim, J. Am. Ceram. Soc. 97, 235–240 (2014)

    Article  Google Scholar 

  34. C.M. Raghavan, J.W. Kim, S.S. Kim, Ceram. Int. 40, 2281–2286 (2014)

    Article  Google Scholar 

  35. P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagra, R.A. York, J.S. Speck, Appl. Phys. Lett. 75, 3186 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation of China (ZR2017LEM008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L.X., Xu, C., Fan, X.L. et al. Study on leakage current, ferroelectric and dielectric properties of BFMO thin films with different bismuth contents. J Mater Sci: Mater Electron 30, 7704–7710 (2019). https://doi.org/10.1007/s10854-019-01086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01086-6

Navigation