Skip to main content
Log in

Structural and photocatalytic properties of sol–gel-derived TiO2 samples prepared by conventional and hydrothermal methods using a low amount of water

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titania is a versatile semiconductor widely used in many applications, including photocatalysis. Among the processing routes used to prepare titania, the sol–gel process deserves to be highlighted because it allows obtaining samples with tailored composition, particle size, and specific surface area. Such properties play a key role in the photocatalytic behavior of titania. In this study, we show that by adjusting the sol–gel parameters and drying/heat treatment conditions it is possible to control the co-existence of anatase and rutile in the synthesized sol–gel titania. The works found in the literature usually deal with the preparation of crystalline titania using water-rich solutions, which usually gives rise to anatase. However, we demonstrate that the lack of water in the starting solution favors the formation of both anatase and rutile; the co-existence of these two phases has been reported to improve the photocatalytic behavior of titania due to a band-gap alignment. Furthermore, we propose a sol–gel route based on a single-step hydrothermal procedure where nanoparticles with sizes of about 3 nm and surface areas up to 120 m2.g−1 are obtained. This study accounts for the knowledge regarding the preparation and use of sol–gel titania for photocatalysis applications. It is supported by a series of experimental techniques, including X-ray diffraction, N2 sorption, thermogravimetry, differential thermal analysis, Raman spectroscopy, transmission electron microscopy, selected area electron diffraction, and UV–Vis diffuse reflectance spectroscopy. The photoactivity of the prepared samples was evaluated in terms of the photodegradation of methylene blue under near-ultraviolet (UV-A) light.

Graphical abstract

Highlights

  • Titania nanoparticles obtained from a sol–gel route based on a water-deficient starting solution.

  • Crystalline samples prepared by either heat-treatment or hydrothermal treatment.

  • The lack of water allows the preparation of anatase-rutile mixed titania.

  • Nanoparticles with sizes as small as 3 nm and specific surface areas up to 120 m2.g−1.

  • Photoactivty evaluated in terms of the degradation of methylene blue under UV-A light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gonçalves BS, Palhares HG, de Souza TCC et al. (2019) Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide-TiO2 nanocomposites prepared by hydrothermal synthesis. J Mater Res Technol 8:6262–6274. https://doi.org/10.1016/j.jmrt.2019.10.020

    Article  CAS  Google Scholar 

  2. Gonçalves BS, Souza TCC, de, Castro VGde et al. (2019) Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites. J Mater Res 34:3918–3930. https://doi.org/10.1557/jmr.2019.342

    Article  CAS  Google Scholar 

  3. Silva LLO, Vasconcelos DCL, Nunes EHM et al. (2012) Processing, structural characterization and performance of alumina supports used in ceramic membranes. Ceram Int 38:1943–1949. https://doi.org/10.1016/j.ceramint.2011.10.025

    Article  CAS  Google Scholar 

  4. Kim DY, Joshi BN, Park JJ et al. (2014) Graphene-titania films by supersonic kinetic spraying for enhanced performance of dye-sensitized solar cells. Ceram Int 40:11089–11097. https://doi.org/10.1016/j.ceramint.2014.03.131

    Article  CAS  Google Scholar 

  5. Houmard M, Vasconcelos DCL, Vasconcelos WL et al. (2009) Water and oil wettability of hybrid organic-inorganic titanate-silicate thin films deposited via a sol-gel route. Surf Sci 603:2698–2707. https://doi.org/10.1016/j.susc.2009.07.005

    Article  CAS  Google Scholar 

  6. Mahy JG, Léonard GL-M, Pirard S et al. (2017) Aqueous sol–gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J Sol Gel Sci Technol 81:27–35. https://doi.org/10.1007/s10971-016-4020-5

    Article  CAS  Google Scholar 

  7. Bu S, Cui C, Liu X, Bai L (2007) Preparation of nanocrystalline porous titania films on titanium substrates by a sol–gel method with polyethylene glycol as a template. J Sol Gel Sci Technol 43:151–159. https://doi.org/10.1007/s10971-007-1556-4

    Article  CAS  Google Scholar 

  8. Farrokhi-Rad M (2018) Electrophoretic deposition of titania nanostructured coatings with different porous patterns. Ceram Int 44:15346–15355. https://doi.org/10.1016/j.ceramint.2018.05.184

    Article  CAS  Google Scholar 

  9. Xiang C, Jiang D, Zou Y et al. (2015) Ammonia sensor based on polypyrrole-graphene nanocomposite decorated with titania nanoparticles. Ceram Int 41:6432–6438. https://doi.org/10.1016/j.ceramint.2015.01.081

    Article  CAS  Google Scholar 

  10. Jing Z, Ling B, Yu Y et al. (2015) Preparation and gas sensing activity of La and Y co-doped titania nanoparticles. J Sol Gel Sci Technol 73:112–117. https://doi.org/10.1007/s10971-014-3501-7

    Article  CAS  Google Scholar 

  11. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  CAS  Google Scholar 

  12. Liu L, Zhao H, Andino JM, Li Y (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2:1817–1828. https://doi.org/10.1021/cs300273q

    Article  CAS  Google Scholar 

  13. Siah WR, Lintang HO, Shamsuddin M, Yuliati L (2016) High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles. IOP Conf Ser Mater Sci Eng 107:12005. https://doi.org/10.1088/1757-899x/107/1/012005

    Article  CAS  Google Scholar 

  14. He J, Du Y, Bai Y et al. (2019) Facile formation of anatase/rutile TiO2 nanocomposites with enhanced photocatalytic activity. Molecules 24:2996. https://doi.org/10.3390/molecules24162996

    Article  CAS  Google Scholar 

  15. Ishigaki T, Nakada Y, Tarutani N et al. (2020) Enhanced visible-light photocatalytic activity of anatase-rutile mixed-phase nano-size powder given by high-temperature heat treatment. R Soc Open Sci 7:191539. https://doi.org/10.1098/rsos.191539

    Article  CAS  Google Scholar 

  16. Konaka R, Kasahara E, Dunlap WC et al. (1999) Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radic Biol Med 27:294–300. https://doi.org/10.1016/S0891-5849(99)00050-7

    Article  CAS  Google Scholar 

  17. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386. https://doi.org/10.1039/c4cp02201g

    Article  CAS  Google Scholar 

  18. Miao G, Chen L, Qi Z (2012) Facile synthesis and active photocatalysis of mesoporous and microporous TiO2 nanoparticles. Eur J Inorg Chem 5864–5871. https://doi.org/10.1002/ejic.201200833

  19. Ullattil SG, Periyat P (2017) Sol-gel synthesis of titanium dioxide. In: Pillai SC, Hehir S (eds) Sol-gel materials for energy, environment and electronic applications. Springer International Publishing, Cham, pp 271–283

  20. Nagliati M, Carotta MC, Gherardi S et al. (2006) TiO2 nanopowders for sensing applications; A comparison between traditional and hydrothermal synthesis way. Adv Sci Technol 45:205–208. https://doi.org/10.4028/www.scientific.net/ast.45.205

  21. Seck EI, Doña-Rodríguez JM, Pulido Melián E et al. (2013) Comparative study of nanocrystalline titanium dioxide obtained through sol-gel and sol-gel-hydrothermal synthesis. J Colloid Interface Sci 400:31–40. https://doi.org/10.1016/j.jcis.2013.03.019

    Article  CAS  Google Scholar 

  22. Wong CL, Tan YN, Mohamed AR (2011) A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. J Environ Manag 92:1669–1680. https://doi.org/10.1016/j.jenvman.2011.03.006

    Article  CAS  Google Scholar 

  23. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol Gel Sci Technol 61:1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  24. Hargreaves JSJ (2016) Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal Struct React 2:33–37. https://doi.org/10.1080/2055074X.2016.1252548

    Article  CAS  Google Scholar 

  25. Bregadiolli BA, Fernandes SL, Graeff CF, de O (2017) Easy and fast preparation of TiO2-based nanostructures using microwave assisted hydrothermal synthesis. Mater Res 20:912–919. https://doi.org/10.1590/1980-5373-MR-2016-0684

    Article  CAS  Google Scholar 

  26. Catauro M, Tranquillo E, Dal Poggetto G, et al. (2018) Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method. Materials 11:. https://doi.org/10.3390/ma11122364

  27. Tang H, Prasad K, Sanjinès R et al. (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047. https://doi.org/10.1063/1.356306

    Article  CAS  Google Scholar 

  28. Song P, Zhang XY, Sun MX et al. (2012) Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4:1800–1804. https://doi.org/10.1039/c2nr11938b

    Article  CAS  Google Scholar 

  29. Tamilselvan V, Yuvaraj D, Rakesh Kumar R, Narasimha Rao K (2012) Growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation. Appl Surf Sci 258:4283–4287. https://doi.org/10.1016/j.apsusc.2011.12.079

    Article  CAS  Google Scholar 

  30. Tuschel D (2019) Raman spectroscopy and polymorphism. Spectroscopy 34:10–21

    Google Scholar 

  31. Challagulla S, Tarafder K, Ganesan R, Roy S (2017) Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep 7:8783. https://doi.org/10.1038/s41598-017-08599-2

    Article  CAS  Google Scholar 

  32. Silva LMC, Gonçalves BS, Braga JDO et al. (2021) Preparation of titania-reduced graphene oxide composite coatings with electro- and photosensitive properties. Appl Surf Sci 538:148029. https://doi.org/10.1016/j.apsusc.2020.148029

    Article  CAS  Google Scholar 

  33. Shaikh SF, Mane RS, Min BK et al. (2016) D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Sci Rep 6:20103. https://doi.org/10.1038/srep20103

    Article  CAS  Google Scholar 

  34. Topcu S, Jodhani G, Gouma P (2016) Optimized nanostructured TiO2 photocatalysts. Front Mater 3:35. https://doi.org/10.3389/fmats.2016.00035

    Article  Google Scholar 

  35. So WW, Park SBin, Kim KJ et al. (2001) The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. J Mater Sci 36:4299–4305. https://doi.org/10.1023/A:1017955408308

    Article  CAS  Google Scholar 

  36. Kumar KNP, Keizer K, Burggraaf AJ (1993) Textural evolution and phase transformation in titania membranes: Part 1.—unsupported membranes. J Mater Chem 3:1141–1149. https://doi.org/10.1039/JM9930301141

    Article  CAS  Google Scholar 

  37. Lopez-Iscoa P, Pugliese D, Boetti NG et al. (2018) Design, synthesis, and structure-property relationships of Er3+-doped TiO2 luminescent particles synthesized by sol-gel. Nanomaterials 8:20. https://doi.org/10.3390/nano8010020

    Article  CAS  Google Scholar 

  38. Ying L, Hon LS, White T et al. (2003) Controlled nanophase development in photocatalytic titania. Mater Trans 44:1328–1332. https://doi.org/10.2320/matertrans.44.1328

    Article  CAS  Google Scholar 

  39. Thommes M, Kaneko K, Neimark AV et al. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  40. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  41. Soares WM, Athayde DD, Nunes EHM (2018) LCA study of photovoltaic systems based on different technologies. Int J Green Energy 15:577–583. https://doi.org/10.1080/15435075.2018.1510408

    Article  Google Scholar 

  42. Saqib N us, Adnan R, Shah I (2016) A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environ Sci Pollut Res 23:15941–15951. https://doi.org/10.1007/s11356-016-6984-7

    Article  CAS  Google Scholar 

  43. Li C, Zhao Z, Shindume Lomboleni H et al. (2017) Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J Mater Res 32:737–747. https://doi.org/10.1557/jmr.2016.448

    Article  CAS  Google Scholar 

  44. Lyu Z, Liu B, Wang R, Tian L (2017) Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J Mater Res 32:2781–2789. https://doi.org/10.1557/jmr.2017.232

    Article  CAS  Google Scholar 

  45. Scanlon DO, Dunnill CW, Buckeridge J et al. (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801. https://doi.org/10.1038/nmat3697

    Article  CAS  Google Scholar 

  46. Yanagisawa K, Ovenstone J (1999) Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J Phys Chem B 103:7781–7787. https://doi.org/10.1021/jp990521c

    Article  CAS  Google Scholar 

  47. Bubacz K, Choina J, Dolat D, Morawski AW (2010) Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol J Environ Stud 19:685–691

    CAS  Google Scholar 

  48. Tichapondwa SM, Newman JP, Kubheka O (2020) Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys Chem Earth, Parts A/B/C 118–119:102900. https://doi.org/10.1016/j.pce.2020.102900

    Article  Google Scholar 

  49. Boehme M, Ensinger W (2011) Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett 3:236–241. https://doi.org/10.1007/BF03353678

    Article  CAS  Google Scholar 

  50. Arbuj SS, Hawaldar RR, Mulik UP et al. (2010) Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Mater Sci Eng B 168:90–94. https://doi.org/10.1016/j.mseb.2009.11.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

EHMN is grateful for the financial support from CAPES (PROEX), FAPEMIG (RED-00102-16, RENOVAMIN), and CNPq (304415/2021-9). The authors thank the technical support from Taiane Guedes/INCT Acqua (Raman spectroscopy) and the UFMG microscopy center (TEM). CeNano2I/CEMUCASI (Prof. Herman Mansur and Dr. Alexandra Mansur) are also recognized for their technical support to this research (TG/DTA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcello Dumont or Eduardo H. M. Nunes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marra, M., Dumont, M., Palhares, H.G. et al. Structural and photocatalytic properties of sol–gel-derived TiO2 samples prepared by conventional and hydrothermal methods using a low amount of water. J Sol-Gel Sci Technol 103, 97–107 (2022). https://doi.org/10.1007/s10971-022-05780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05780-6

Keywords

Navigation