Skip to main content
Log in

Enhanced corrosion inhibition of low carbon steel in aqueous sodium chloride employing sol–gel-based hybrid silanol coatings

  • Original Paper: Industrial and technological applications of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The anti-corrosion properties of sol–gel-based hybrid silanol coatings incorporated with span tea leaves extract employed on low carbon steel in saline solution was explored by electrochemical and surface analyses. Hybrid sol–gel matrices were prepared by copolymerizing tetraethyl orthosilicate (TEOS) and 3-aminopropyltriethoxysilane (APTES). Corrosion protective hybrid sol–gel coatings were dip-coated on low carbon steel substrates and sintered to ensure the formation of metallo-siloxane bonds. Inhibition efficiency of 85.66% was achieved with the doping concentration of 75 ppm of water extract into hybrid sol–gel at 30 °C. Polarisation studies demonstrated that the hybrid coatings incorporated with water extract of span tea leaves operate as a mixed-type inhibitor. The Nyquist impedance plots depicted that on increasing the concentration of span tea leaves extract, charge transfer resistance (Rct) increased, and double-layer constant phase element (CPEdl) decreased. A comparison of the corrosion resistance of the coated and uncoated low carbon steel substrates was presented. Electrochemical noise analysis substantiated that the optimum corrosion-resistant coating formulation endured a much lower current noise fluctuation. Moreover, wettability analysis established the hydrophobic nature of the optimum corrosion protective coating.

Highlights

  • An anti-corrosion formulation based on hybrid silica sol–gel was prepared.

  • icorr values of coated substrates were significantly lower than the uncoated substrate.

  • Aqueous crude extract-doped-(APTES-TEOS)/Fe showed the highest Rct.

  • Improved hydrophobic characteristics of developed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmad Z (2006) Principles of corrosion engineering and corrosion control. Butterworth-Heinemann, UK

  2. Revie RW, Uhlig HH (2011) Uhlig’s corrosion handbook. Electrochemical Society series. John Wiley & Sons, Canada

  3. de la Fuente D, Díaz I, Simancas J, Chico B, Morcillo M (2011) Long-term atmospheric corrosion of mild steel. Corros Sci 53(2):604–617. https://doi.org/10.1016/j.corsci.2010.10.007

    Article  CAS  Google Scholar 

  4. Solmaz R, Kardaş G, Çulha M, Yazıcı B, Erbil M (2008) Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim Acta 53(20):5941–5952. https://doi.org/10.1016/j.electacta.2008.03.055

    Article  CAS  Google Scholar 

  5. Mosa J, Rosero-Navarro NC, Aparicio M (2016) Active corrosion inhibition of mild steel by environmentally-friendly Ce-doped organic–inorganic sol–gel coatings. RSC Adv 6(46):39577–39586

    Article  CAS  Google Scholar 

  6. Chou TP, Chandrasekaran C, Cao GZ (2003) Sol-gel-derived hybrid coatings for corrosion protection. J Solgel Sci Technol 26(1):321–327. https://doi.org/10.1023/A:1020736107842

    Article  CAS  Google Scholar 

  7. Szőke ÁF, Szabó GS, Hórvölgyi Z, Albert E, Gaina L, Muresan LM (2019) Eco-friendly indigo carmine-loaded chitosan coatings for improved anti-corrosion protection of zinc substrates. Carbohydr Polym 215:63–72

    Article  Google Scholar 

  8. Ali SM, Emran KM, Messali M (2019) Improved protection performance of modified sol-gel coatings with pyridinium-based ionic liquid for cast iron corrosion in 0.5 M HCl solution. Prog Org Coat 130:226–234

    Article  CAS  Google Scholar 

  9. Debnárová S, Souček P, Vašina P, Zábranský L, Buršíková V, Mirzaei S, Pei YT (2019) The tribological properties of short range ordered WBC protective coatings prepared by pulsed magnetron sputtering. Surf Coat Tech 357:364–371

    Article  Google Scholar 

  10. Hill AJ, Thornton AW, Hannink RHJ, Moon JD, Freeman BD (2020) Role of free volume in molecular mobility and performance of glassy polymers for corrosion-protective coatings. Corros Eng Sci Techn 55:145–158

    Article  CAS  Google Scholar 

  11. Figueira RB, Sousa R, Silva CJR (2020) Multifunctional and smart organic–inorganic hybrid sol–gel coatings for corrosion protection applications. In: Makhlouf ASH, Abu-Thabit NY (eds) Advances in smart coatings and thin films for future industrial and biomedical engineering applications. Elsevier, Netherlands, p 57–97

  12. Caldona EB, Smith DW, Wipf DO (2020) Protective action of semi-fluorinated perfluorocyclobutyl polymer coatings against corrosion of mild steel. J Mater Sci 55(4):1796–1812

    Article  CAS  Google Scholar 

  13. Castro Y, Özmen E, Durán A (2020) Integrated self-healing coating system for outstanding corrosion protection of AA2024. Surf Coat Tech 387:125521. https://doi.org/10.1016/j.surfcoat.2020.125521

    Article  CAS  Google Scholar 

  14. Thai TT, Trinh AT, Olivier M-G (2020) Hybrid sol-gel coatings doped with cerium nanocontainers for active corrosion protection of AA2024. Prog Org Coat 138:105428. https://doi.org/10.1016/j.porgcoat.2019.105428

    Article  CAS  Google Scholar 

  15. Alibakhshi E, Akbarian M, Ramezanzadeh M, Ramezanzadeh B, Mahdavian M (2018) Evaluation of the corrosion protection performance of mild steel coated with hybrid sol-gel silane coating in 3.5 wt.% NaCl solution. Prog Org Coat 123:190–200. https://doi.org/10.1016/j.porgcoat.2018.07.008

    Article  CAS  Google Scholar 

  16. Carboni D, Pinna A, Malfatti L, Innocenzi P (2014) Smart tailoring of the surface chemistry in GPTMS hybrid organic–inorganic films. N J Chem 38(4):1635–1640. https://doi.org/10.1039/C3NJ01385E

    Article  CAS  Google Scholar 

  17. Hu T-H, Shi H-W, Wei T, Fan S-H, Liu F-C, Han E-H (2019) Corrosion protection of AA2024-T3 by cerium malate and cerium malate-doped sol-gel coatings. Acta Met Sin (Engl Lett) 32(7):913–924. https://doi.org/10.1007/s40195-018-0846-x

    Article  CAS  Google Scholar 

  18. Chen M-A, Lu X-B, Guo Z-H, Huang R (2011) Influence of hydrolysis time on the structure and corrosion protective performance of (3-mercaptopropyl) triethoxysilane film on copper. Corros Sci 53(9):2793–2802

    Article  CAS  Google Scholar 

  19. Ramezanzadeh B, Raeisi E, Mahdavian M (2015) Studying various mixtures of 3-aminopropyltriethoxysilane (APS) and tetraethylorthosilicate (TEOS) silanes on the corrosion resistance of mild steel and adhesion properties of epoxy coating. Int J Adhes Adhes 63:166–176

    Article  CAS  Google Scholar 

  20. Nasr-Esfahani M, Pourriahi M, Ashrafi A, Motalebi A (2014) Corrosion performance of rosemary-extract-doped TEOS:TMSM sol-gel coatings on 304L stainless steel. Surf Engin Appl Electrochem 50(4):337–345. https://doi.org/10.3103/S1068375514040097

    Article  Google Scholar 

  21. Durán A, Castro Y, Conde A, de Damborenea JJ (2016) Sol-gel protective coatings for metals. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology. Springer International Publishing, Cham, p 1–65. https://doi.org/10.1007/978-3-319-19454-7_70-1

  22. El Ibrahimi B, Jmiai A, Bazzi L, El Issami S (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem 13(1):740–771. https://doi.org/10.1016/j.arabjc.2017.07.013

    Article  CAS  Google Scholar 

  23. Paul S, Kar B (2012) Mitigation of mild steel corrosion in acid by green inhibitors: yeast, pepper, garlic, and coffee. ISRN Corros 2012:8. https://doi.org/10.5402/2012/641386

    Article  CAS  Google Scholar 

  24. majd MT, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B (2020) Probing molecular adsorption/interactions and anti-corrosion performance of poppy extract in acidic environments. J Mol Liq 304:112750. https://doi.org/10.1016/j.molliq.2020.112750

    Article  CAS  Google Scholar 

  25. Javidparvar AA, Naderi R, Ramezanzadeh B (2020) Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: Application in epoxy-based nanocomposite for active corrosion protection. Corros Sci 165:108379. https://doi.org/10.1016/j.corsci.2019.108379

    Article  CAS  Google Scholar 

  26. Mouaden KEL, Chauhan DS, Quraishi MA, Bazzi L (2020) Thiocarbohydrazide-crosslinked chitosan as a bioinspired corrosion inhibitor for protection of stainless steel in 3.5% NaCl. Sustain Chem Pharm 15:100213. https://doi.org/10.1016/j.scp.2020.100213

    Article  Google Scholar 

  27. Guo L, Tan J, Kaya S, Leng S, Li Q, Zhang F (2020) Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: a combined experimental and in silico investigation. J Colloid Inter Sci 570:116–124. https://doi.org/10.1016/j.jcis.2020.03.001

    Article  CAS  Google Scholar 

  28. Zhang W, Li H-J, Chen L, Zhang S, Ma Y, Ye C, Zhou Y, Pang B, Wu Y-C (2020) Fructan from Polygonatum cyrtonema Hua as an eco-friendly corrosion inhibitor for mild steel in HCl media. Carbohydr Polym 238:116216. https://doi.org/10.1016/j.carbpol.2020.116216

    Article  CAS  Google Scholar 

  29. Seshian BD, Pandian BR, Durai U (2020) Adina Cordifolia as a corrosion inhibitor–a green approach against mild steel corrosion in 0.5 M sulphuric acid medium. Pigm Resin Technol 49:63–70. https://doi.org/10.1108/PRT-01-2019-0004

    Article  Google Scholar 

  30. Ogunleye OO, Arinkoola AO, Eletta OA, Agbede OO, Osho YA, Morakinyo AF, Hamed JO (2020) Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon 6(1):e03205. https://doi.org/10.1016/j.heliyon.2020.e03205

    Article  CAS  Google Scholar 

  31. Yakubu SA, Rahim AA, Azmi MN, Awang K, Hussin MH (2020) Comparative evaluations of antioxidant potentials of Dryobalanops aromatica tree bark extracts as green corrosion inhibitors of mild steel in hydrochloric acid. Mater Res Express 6(12):1265c1264

    Article  Google Scholar 

  32. Hamidon TS, Qiang TZ, Hussin MH (2019) Anticorrosive performance of AA6061 aluminium alloy treated with sol-gel coatings doped with mangrove bark tannins in 3.5 wt% NaCl. Mater Res Express 6(9):096417. https://doi.org/10.1088/2053-1591/ab2ef6

    Article  CAS  Google Scholar 

  33. Bahlakeh G, Ramezanzadeh B, Dehghani A, Ramezanzadeh M (2019) Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: detailed experimental and electronic/atomic level computational explorations. J Mol Liq 283:174–195. https://doi.org/10.1016/j.molliq.2019.03.086

    Article  CAS  Google Scholar 

  34. Majd MT, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G (2020) Production of an environmentally stable anti-corrosion film based on Esfand seed extract molecules-metal cations: Integrated experimental and computer modeling approaches. J Hazard Mater 382:121029. https://doi.org/10.1016/j.jhazmat.2019.121029

    Article  CAS  Google Scholar 

  35. Sedik A, Lerari D, Salci A, Athmani S, Bachari K, Gecibesler İH, Solmaz R (2020) Dardagan fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: electrochemical and surface morphological studies. J Taiwan Inst Chem E 107:189–200. https://doi.org/10.1016/j.jtice.2019.12.006

    Article  CAS  Google Scholar 

  36. Olakolegan OD, Owoeye SS, Oladimeji EA, Sanya OT (2020) Green synthesis of Terminalia Glaucescens Planch (Udi plant roots) extracts as green inhibitor for aluminum (6063) alloy in acidic and marine environment. J King Saud Univ Sci 32(2):1278–1285. https://doi.org/10.1016/j.jksus.2019.11.010

    Article  Google Scholar 

  37. Devikala S, Kamaraj P, Arthanareeswari M, Pavithra S (2019) Green corrosion inhibition of mild steel by Asafoetida extract extract in 3.5% NaCl. Mater Today-Proc 14:590–601. https://doi.org/10.1016/j.matpr.2019.04.183

    Article  CAS  Google Scholar 

  38. Oguzie EE (2008) Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel. Corros Sci 50(11):2993–2998. https://doi.org/10.1016/j.corsci.2008.08.004

    Article  CAS  Google Scholar 

  39. Hamidon TS, Hussin MH (2020) Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Prog Org Coat 140:105478. https://doi.org/10.1016/j.porgcoat.2019.105478

    Article  CAS  Google Scholar 

  40. Khodaei M, Shadmani S (2019) Superhydrophobicity on aluminum through reactive-etching and TEOS/GPTMS/nano-Al2O3 silane-based nanocomposite coating. Surf Coat Tech 374:1078–1090. https://doi.org/10.1016/j.surfcoat.2019.06.074

    Article  CAS  Google Scholar 

  41. Wu Y, Du Z, Wang H, Cheng X (2017) Synthesis of aqueous highly branched silica sol as underlying crosslinker for corrosion protection. Prog Org Coat 111:381–388. https://doi.org/10.1016/j.porgcoat.2017.06.023

    Article  CAS  Google Scholar 

  42. Rodič P, Iskra J, Milošev I (2014) Study of a sol-gel process in the preparation of hybrid coatings for corrosion protection using FTIR and 1H NMR methods. J Non-Cryst Solids 396-397:25–35. https://doi.org/10.1016/j.jnoncrysol.2014.04.013

    Article  CAS  Google Scholar 

  43. Rodič P, Iskra J, Milošev I (2014) A hybrid organic-inorganic sol-gel coating for protecting aluminium alloy 7075-T6 against corrosion in Harrison’s solution. J Sol-Gel Sci Technol 70(1):90–103

    Article  Google Scholar 

  44. Hussin MH, Rahim AA, Ibrahim MNM, Brosse N (2015) Improved corrosion inhibition of mild steel by chemically modified lignin polymers from Elaeis guineensis agricultural waste. Mater Chem Phys 163:201–212

    Article  CAS  Google Scholar 

  45. Hussin MH, Rahim AA, Ibrahim MNM, Brosse N (2016) The capability of ultrafiltrated alkaline and organosolv oil palm (Elaeis guineensis) fronds lignin as green corrosion inhibitor for mild steel in 0.5 M HCl solution. Measurement 78:90–103

    Article  Google Scholar 

  46. Asadi N, Naderi R, Saremi M, Arman SY, Fedel M, Deflorian F (2014) Study of corrosion protection of mild steel by eco-friendly silane sol–gel coating. J Sol-Gel Sci Technol 70(3):329–338. https://doi.org/10.1007/s10971-014-3286-8

    Article  CAS  Google Scholar 

  47. Gudić S, Oguzie EE, Radonić A, Vrsalović L, Smoljko I, Kliškić M (2014) Inhibition of copper corrosion in chloride solution by caffeine isolated from black tea. Maced J Chem Chem En 33(1):13–25. https://doi.org/10.20450/mjcce.2014.441

    Article  Google Scholar 

  48. Thao TT, Lan HTP, Thuy ND (2016) A study on the corrosive inhibition ability of CT3 steel in 1 M HCl solution by caffeine and some characteristics of the inhibition process. VJC 54(6):742

    Google Scholar 

  49. Vignesh RB, Edison TNJI, Sethuraman MG (2014) Sol-gel coating with 3-Mercaptopropyltrimethoxysilane as precursor for corrosion protection of aluminium metal J Mater Sci Technol 30(8):814–820. https://doi.org/10.1016/j.jmst.2013.11.001

    Article  CAS  Google Scholar 

  50. Yang L (2008) Techniques for corrosion monitoring. Elsevier, Cambridge

  51. Pathak SS, Khanna AS (2008) Synthesis and performance evaluation of environmentally compliant epoxysilane coatings for aluminum alloy. Prog Org Coat 62(4):409–416. https://doi.org/10.1016/j.porgcoat.2008.02.008

    Article  CAS  Google Scholar 

  52. Faraji S, Rahim AA, Mohamed N, Sipaut CS, Raja B (2011) The influence of SiC particles on the corrosion resistance of electroless, Cu-P composite coating in 1M HCl. Mater Chem Phys 129(3):1063–1070. https://doi.org/10.1016/j.matchemphys.2011.05.060

    Article  CAS  Google Scholar 

  53. Kirtay S (2014) Preparation of hybrid silica sol-gel coatings on mild steel surfaces and evaluation of their corrosion resistance. Prog Org Coat 77(11):1861–1866. https://doi.org/10.1016/j.porgcoat.2014.06.016

    Article  CAS  Google Scholar 

  54. Qian M, McIntosh Soutar A, Tan XH, Zeng XT, Wijesinghe SL (2009) Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel. Thin Solid Films 517(17):5237–5242. https://doi.org/10.1016/j.tsf.2009.03.114

    Article  CAS  Google Scholar 

  55. Samiento-Bustos E, Rodriguez JGG, Uruchurtu J, Dominguez-Patiño G, Salinas-Bravo VM (2008) Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr+ethylene glycol+H2O mixture. Corros Sci 50(8):2296–2303. https://doi.org/10.1016/j.corsci.2008.05.014

    Article  CAS  Google Scholar 

  56. Suleiman RK (2019) Improved mechanical and anticorrosion properties of metal oxide-loaded hybrid sol-gel coatings for mild steel in a saline medium. J Adhes Sci Technol: 1–16. https://doi.org/10.1080/01694243.2019.1707583

  57. Alcantara-Garcia A, Garcia-Casas A, Jimenez-Morales A (2020) The effect of the organosilane content on the barrier features of sol-gel anticorrosive coatings applied on carbon steel. Prog Org Coat 139:105418. https://doi.org/10.1016/j.porgcoat.2019.105418

    Article  CAS  Google Scholar 

  58. Carbonell DJ, García-Casas A, Izquierdo J, Souto RM, Galván JC, Jiménez-Morales A (2016) Scanning electrochemical microscopy characterization of sol-gel coatings applied on AA2024-T3 substrate for corrosion protection. Corros Sci 111:625–636. https://doi.org/10.1016/j.corsci.2016.06.002

    Article  CAS  Google Scholar 

  59. Rozuli NA, Hamidon TS, Hussin MH (2019) Evaluation of Piper sarmentosum extract’s corrosion inhibitive effects and adsorption characteristics for the corrosion protection of mild steel in 0.5 M HCl. Mater Res Express 6(10):106524. https://doi.org/10.1088/2053-1591/ab3677

    Article  CAS  Google Scholar 

  60. Izadi M, Shahrabi T, Ramezanzadeh B (2017) Electrochemical investigations of the corrosion resistance of a hybrid sol-gel film containing green corrosion inhibitor-encapsulated nanocontainers. J Taiwan Inst Chem E 81:356–372. https://doi.org/10.1016/j.jtice.2017.10.039

    Article  CAS  Google Scholar 

  61. Taheri M, Naderi R, Saremi M, Mahdavian M (2017) Development of an ecofriendly silane sol-gel coating with zinc acetylacetonate corrosion inhibitor for active protection of mild steel in sodium chloride solution. J Sol-Gel Sci Technol 81(1):154–166. https://doi.org/10.1007/s10971-016-4180-3

    Article  CAS  Google Scholar 

  62. Šoić I, Martinez S, Dubravić M (2019) Gel-Electrolyte EIS setup used for probing of IR Dried/Cured industrial coatings. Prog Org Coat 137:105331. https://doi.org/10.1016/j.porgcoat.2019.105331

    Article  CAS  Google Scholar 

  63. Deflorian F, Rossi S, Fedel M, Motte C (2010) Electrochemical investigation of high-performance silane sol–gel films containing clay nanoparticles. Prog Org Coat 69(2):158–166

    Article  CAS  Google Scholar 

  64. Yazdani S, Javadpour S, Mehdizadeh naderi S, Javidi M (2016) Corrosion resistant sol-gel coating on 2024-T3 aluminum. IUST 13(2):44–49. https://doi.org/10.22068/ijmse.13.2.44

    Article  Google Scholar 

  65. Pilipavicius J, Kaleinikaite R, Pucetaite M, Velicka M, Kareiva A, Beganskiene A (2016) Controllable formation of high density SERS-active silver nanoprism layers on hybrid silica-APTES coatings. Appl Surf Sci 377:134–140. https://doi.org/10.1016/j.apsusc.2016.03.169

    Article  CAS  Google Scholar 

  66. Tezuka T, Tadanaga K, Hayashi A, Tatsumisago M (2006) Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from 3-Aminopropyltriethoxysilane and sulfuric acid by the sol–gel method. J Am Chem Soc 128(51):16470–16471. https://doi.org/10.1021/ja066345k

    Article  CAS  Google Scholar 

  67. Peña-Alonso R, Rubio F, Rubio J, Oteo JL (2007) Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy. J Mater Sci 42(2):595–603. https://doi.org/10.1007/s10853-006-1138-9

    Article  CAS  Google Scholar 

  68. Balaji J, Roh S-H, TNJI E, Jung H-Y, Sethuraman MG (2020) Sol-gel based hybrid silane coatings for enhanced corrosion protection of copper in aqueous sodium chloride. J Mol Liq 302:112551

    Article  CAS  Google Scholar 

  69. Zhang S, Dong D, Sui Y, Liu Z, Wang H, Qian Z, Su W (2006) Preparation of core shell particles consisting of cobalt ferrite and silica by sol–gel process. J Alloy Compd 415(1–2):257–260

    Article  CAS  Google Scholar 

  70. Balgude D, Sabnis A (2012) Sol-gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J Sol-Gel Sci Technol 64(1):124–134

    Article  CAS  Google Scholar 

  71. Karthik N, Asha S, Sethuraman MG (2016) Influence of pH-sensitive 4-aminothiophenol on the copper corrosion inhibition of hybrid sol–gel monolayers. J Sol-Gel Sci Technol 78(2):248–257. https://doi.org/10.1007/s10971-015-3944-5

    Article  CAS  Google Scholar 

  72. Palomino LM, Suegama PH, Aoki IV, Fatima Montemor M, De Melo HG (2008) Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3. Corros Sci 50(5):1258–1266. https://doi.org/10.1016/j.corsci.2008.01.018

    Article  CAS  Google Scholar 

  73. An Y, Chen M, Xue Q, Liu W (2007) Preparation and self-assembly of carboxylic acid-functionalized silica. J Colloid Interface Sci 311(2):507–513. https://doi.org/10.1016/j.jcis.2007.02.084

    Article  CAS  Google Scholar 

  74. Shang HM, Wang Y, Takahashi K, Cao GZ, Li D, Xia Y (2005) Nanostructured superhydrophobic surfaces. J Mater Sci Lett 40:3587–3591

    CAS  Google Scholar 

  75. Ishak NA, Hamidon TS, Zi-Hui T, Hussin MH (2020) Extracts of curcumin-incorporated hybrid sol-gel coatings for the corrosion mitigation of mild steel in 0.5 M HCl. J Coat Technol Res. https://doi.org/10.1007/s11998-020-00364-x

Download references

Acknowledgements

The authors appreciate the financial aid by Universiti Sains Malaysia (USM Short Term Grant; 304/PKIMIA/6315100). TSH extends his gratitude to Universiti Sains Malaysia for the financial assistance offered through the Graduate Assistant Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hazwan Hussin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidon, T.S., Ishak, N.‘. & Hussin, M.H. Enhanced corrosion inhibition of low carbon steel in aqueous sodium chloride employing sol–gel-based hybrid silanol coatings. J Sol-Gel Sci Technol 97, 556–571 (2021). https://doi.org/10.1007/s10971-021-05474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05474-5

Keywords

Navigation