Skip to main content
Log in

Synthesis of mixed metal oxide nanoparticles of SnO2 with SrO via sol–gel technology: their structural, optical, and electrical properties

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mixed metal oxides of tin with strontium (xSnO2.SrO) in different molar ratio {where x = 1 (1), 2 (2), 4(3); SnO2 doped with Sr+2(4), SnO2 doped with Sr+2 and co-doped with F(5)} have been prepared by sol–gel technology in basic medium using SnCl2.2H2O as precursor in isopropanol as solvent. Structural analysis by XRD patterns have shown formation of particles at nanoscale and phase separation of SnO2 in tetragonal rutile framework in these mixed metal oxides. This fact was further supported by TEM. SEM images of all these samples have shown formation of various geometrical patterns ranging from spherical particles to nanorods. In the IR spectra of all these oxides, Sr–O absorption bands were present only in sample (1). UV–Vis spectroscopy has shown reduction in optical band gap in mixed metal oxides and the lowest value of band gap was observed for sample (3). Photoluminescence spectra of all these derivatives are found to be almost similar again indicated retention of tetragonal rutile SnO2 framework. IV curves of all these oxides are non-linear and lowest resistance was observed for sample (3). This fact was further supported by impedance measurements.

Highlights

  • Mixed metal oxides of SnO2 and SrO in different stoichiometric ratios have been prepared by sol–gel technology in basic medium.

  • XRD patterns have shown separation of phases and retention of tetragonal rutile framework in SnO2.

  • SEM images have shown formation of various geometrical patterns ranging from spherical particles to nanorods.

  • UV–Vis spectroscopy has shown reduction in optical band gap in these mixed metal oxides.

  • IV curves and impedance measurements have shown comparatively high conductance in sample (3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thangaraju B (2002) Thin Solid Films 402:71–78

    Article  Google Scholar 

  2. Baker PGL, Sanderson RD, Crouch AM (2007) Thin Solid Films 515:6691–6697

    Article  Google Scholar 

  3. Liu Y, Li Y, Zeng H (2013) J Nanomater 2013:1–9

    Google Scholar 

  4. Bargougui R, Oueslati A, Schmerber G, Ulhaq-Bouillet C, Colis S, Hlel F, Ammar S, Dinia A (2014) J Mater Sci: Mater Electron 25:2066–2071

    Google Scholar 

  5. Banyamin ZY, Kelly PJ, West G, Boardman J (2014) Coatings 4:732–746

    Article  Google Scholar 

  6. Sagadevan S, Podder J (2015) Soft Nanosci Lett 5:55–64

    Article  Google Scholar 

  7. Khan N, Athar T, Foud H, Umar A, Ansari ZA, Ansari SG (2017) Scientific reports 7, Article No. 42510. p 11

  8. Sharma V (2017) J Sol-gel Sci Technol 84:231–238

    Article  Google Scholar 

  9. Patil GE, Kajale DD, Gaikwad VB, Jain GH (2012) Int Nano Lett 2:46–51

    Article  Google Scholar 

  10. Helwig A, Muller G, Svervegkieri G, Faglia G (2008) Sens Actuators B130:193–199

    Article  Google Scholar 

  11. Kadhim IH, Hassan HA, Abdullah QN (2016) Nano Micro Lett 8:20–28

    Article  Google Scholar 

  12. Zhao Q, Ma L, Zhang Q, Wang C, Xu X (2015) J Nanomater 2015:1–15

    Google Scholar 

  13. Kalpana D, Omkumar KS, Kumar SS, Ranganathan N (2006) Electrochim Acta 52(3):1309–1315

    Article  Google Scholar 

  14. Yadav AA, Masumdar EU, Moholkar AV, Neumann-Spallart M, Rajpure KY, Bhosle CH (2009) J Alloy Compd 488:350–355

    Article  Google Scholar 

  15. He Z, Zhou J (2013) Mod Res Catal 2:13–18

    Article  Google Scholar 

  16. Liu Y, Koep E, Liu M (2005) Chem Meter 17(15):3997–4000

    Article  Google Scholar 

  17. Chacko S, Bushiri MJ, Vaidyan VK (2006) J Phys D-Appl Phys 39:4540–4543

    Article  Google Scholar 

  18. Elangovan E, Ramamurthi K (2005) Thin Solid Films 476:231–236

    Article  Google Scholar 

  19. Nütz T, Haase M (2000) J Phys Chem B 104:8430–8437

    Article  Google Scholar 

  20. Blessi S, Sonia MML, Vijayalakshmi S, Pauline S (2014) Int J Res (IJCRGG) 6(3):2153-2155

  21. Bhagwat AD, Sawant SS, Ankamwar BG, Mahajan CM (2015) J Nano Electron Phys 7(4):4037. (4pp)

    Google Scholar 

  22. Agrawal S, Sharma V, Bohra R (2006) J Chem Res 7:426–430

    Article  Google Scholar 

  23. Sharma N, Sharma V, Bohra R, Raju VS (2007) Appl Org -Met Chem 21:763–771

    Article  Google Scholar 

  24. Sharma N, Sharma V, Bohra R, Raju VS, Lorenz I-P, Krinninger C, Mayer P (2007) Inorg Chim Acta 360:3002–3012

    Article  Google Scholar 

  25. Dhayal V, Sharma N, Sharma V, Bohra R, Drake JE, McDonald CLB (2007) Polyhedron 26:3168–3174

    Article  Google Scholar 

  26. Mishra S, Daniele S (2015) Chem Rev 115:8379–8448

    Article  Google Scholar 

  27. Nemade KR, Waghuley SA (2013) J Results Phys 3:52–54

    Article  Google Scholar 

  28. Hamedani HA, Allam NK, Garmestani H, EI-Sayed MA (2011) J Phys Chem C 115:13480–13486

    Article  Google Scholar 

  29. Kim S, Yang Y, Oh WK, Kim C, Jang J (2014) Adv Healthc Mater 3:1097–1106

    Article  Google Scholar 

  30. Ueno S, Nakashima K, Sakamoto Y, Wad S (2015) Nanomaterials 5:386–397

    Article  Google Scholar 

  31. Luo J, Shen P, Yao W, Jiang C, Xu J (2016) Nanoscale Res Lett 11: 141(14 pp).

  32. Thompson S, Shirtcliffe NJ, O’Keefe ES, Appleton S, Perry CC (2005) J Magn Magn Mater 292:100–107

    Article  Google Scholar 

  33. Jose R, Suzuki T, Ohishi Y (2006) J Non-Cryst Solids 352:5564–5568

    Article  Google Scholar 

  34. Veverka P, Knižek K, Pollert E, Bohaček J, Vasseur S, Duguet D, Portier J (2007) J Magn Magn Mater 309(1):106–112

    Article  Google Scholar 

  35. Luo J, Xu Y, Gao D (2015) Solid State Sci 37:40–46

    Article  Google Scholar 

  36. Lashanizadegan M, Mousavi F, Mirzazahed H (2016) J Ceram Process Res 17:586–590

    Google Scholar 

  37. Wong-Ng W, Cline JP, Cook LP, Greenwood W (2000) Adv X-ray Anal 42:355–365

    Google Scholar 

  38. Smith MB, Page K, Siegrist T, Redmond PL, Walter EC, Sheshadry R, Brus LE, Steigerwald ML (2008) J Am Chem Soc 130:6955–6963

    Article  Google Scholar 

  39. Zou GL, Liu R, Chen WX, Zu ZD (2007) Mater Res Bull 42:1153–1158

    Article  Google Scholar 

  40. Zhang J, Gao L (2004) J Solid State Chem 4-5:1425–1430

    Article  Google Scholar 

  41. Pasierb P, Komornicki S, Rokita M, Rekas M (2001) J Mol Struct 596:151–156

    Article  Google Scholar 

  42. Bonu V, Das A, Amirthapandian S, Dhara S, Tyagi AK (2015) Phys Chem Chem Phys 17:9794–9801

    Article  Google Scholar 

  43. Sudhaparimala S, Gnanamania A, Mandal AB (2014) Am J Nanosci Tech 2:75–83

    Article  Google Scholar 

  44. Rajeshwaran P, Shivarajan A (2015) J Mater Sci: Mater Electron 26:539–546

    Google Scholar 

  45. Mazumder N, Bharti A, Saha S, Sen D, Chattopadhyay KK (2012) Curr Appl Phys 12:975–982

    Article  Google Scholar 

  46. Chu CW, F. Chen, Shulman J, Tsui S, Xue YY, Wen W, Sheng P (2005) Proc. SPIE 5932, Strongly Correlated Electron Materials: Physics and Nanoengineering, 59320X. arXiv: cond-mat/0511166[cond.mat.Supr.con] p 9

Download references

Acknowledgements

V Sharma is thankful to UGC- New Delhi for financial support (No. MS-37/304004/XII/13-14/CRO dated 19 January 2015). We are thankful to Material Research Center, MNIT, Jaipur Rajasthan for providing all technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinita sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

sharma, V., Prajapati, R.C. Synthesis of mixed metal oxide nanoparticles of SnO2 with SrO via sol–gel technology: their structural, optical, and electrical properties. J Sol-Gel Sci Technol 87, 41–49 (2018). https://doi.org/10.1007/s10971-018-4718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4718-7

Keywords

Navigation